An overview of recent results on the identification of sparse channels using random probes

In this paper, we collect and discuss some of the recent theoretical results on channel identification using a random probe sequence. These results are part of the body of work known as compressive sampling, a rapidly developing field whose central message is that sparse vectors can be recovered from a set of “random” underdetermined measurements. In the context of channel estimation, if the channel's impulse response is sparse, then it can be estimated by exciting the channel with a random probing sequence and then taking a relatively small number of samples of the output. We also overview recent results in multiple channel estimation that show the channel responses in a multiple-input multiple-output (MIMO) system can be efficiently estimated by exciting all of the inputs with independent random probing signals simultaneously.

[1]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[2]  Justin Romberg,et al.  A uniform uncertainty principle for Gaussian circulant matrices , 2009, 2009 16th International Conference on Digital Signal Processing.

[3]  Max Deffenbaugh,et al.  Efficient seismic forward modeling using simultaneous random sources and sparsity , 2008 .

[4]  Gábor Lugosi,et al.  Concentration Inequalities , 2008, COLT.

[5]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[6]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[7]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[8]  Stéphane Mallat,et al.  A Wavelet Tour of Signal Processing - The Sparse Way, 3rd Edition , 2008 .

[9]  J. A. Catipovic,et al.  Performance limitations in underwater acoustic telemetry , 1990 .

[10]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[11]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[12]  J. Romberg,et al.  Sparse channel separation using random probes , 2010, 1002.4222.

[13]  J. Romberg,et al.  Restricted Isometries for Partial Random Circulant Matrices , 2010, arXiv.org.

[14]  Emmanuel J. Candès,et al.  NESTA: A Fast and Accurate First-Order Method for Sparse Recovery , 2009, SIAM J. Imaging Sci..

[15]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[16]  Robert D. Nowak,et al.  Toeplitz Compressed Sensing Matrices With Applications to Sparse Channel Estimation , 2010, IEEE Transactions on Information Theory.

[17]  Holger Rauhut,et al.  Circulant and Toeplitz matrices in compressed sensing , 2009, ArXiv.

[18]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[19]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[20]  C. Burrus,et al.  Introduction to Wavelets and Wavelet Transforms: A Primer , 1997 .

[21]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .