PRIME (SEMIPRIME) BI-HYPERIDEALS OF SEMIHYPERGROUPS BASED ON INTUITIONISTIC FUZZY POINTS

Using the concept of intuitionistic fuzzy point, the notion of (2;2 _q)intuitionistic fuzzy bi-hyperideal of semihypergroups is introduced. Several characterizations of this notion are given and the behavior of this structure under homomorphisms of semihypergroups is discussed. Finally, the notion of prime (semiprime) (2;2 _q)-intuitionistic fuzzy bi-hyperideal of semihypergroups is introduced and some related properties are proved.

[1]  H. Hedayati Intuitionistic (S, T)-Fuzzy (1, 2)-Ideals of Semigroups with Interval Valued Membership Functions , 2012 .

[2]  S. Lekkoksung,et al.  On Intuitionistic Fuzzy Bi-Hyperideals of Semihypergroups , 2012 .

[3]  H. Hedayati,et al.  Fuzzy ideals of semirings , 2011, Neural Computing and Applications.

[4]  Bijan Davvaz,et al.  (alpha, Beta)-intuitionistic Fuzzy Ideals of Hemirings , 2011, Comput. Math. Appl..

[5]  H. Hedayati Interval valued (α, β)-fuzzy bi-ideals of semigroups , 2011 .

[6]  H. Hedayati On interval valued (α,β)—fuzzy hyperideals of hyperlattices , 2011 .

[7]  Bijan Davvaz,et al.  A study on fuzzy interior ideals of Gamma-semigroups , 2010, Computers and Mathematics with Applications.

[8]  G. Hedayati t-implication-based fuzzy interior hyperideals of semihypergroups , 2010 .

[9]  Bijan Davvaz,et al.  On -hyperideals in -semihypergroups , 2010 .

[10]  Bijan Davvaz,et al.  Intuitionistic Fuzzy n-ary Hypergroups , 2010, J. Multiple Valued Log. Soft Comput..

[11]  Wieslaw A. Dudek,et al.  (alpha, Beta)-fuzzy Ideals of Hemirings , 2009, Comput. Math. Appl..

[12]  Bijan Davvaz,et al.  Atanassov's intuitionistic (S,T)-fuzzy n-ary sub-hypergroups and their properties , 2009, Inf. Sci..

[13]  M. Mathematical,et al.  GENERALIZED FUZZY K-IDEALS OF SEMIRINGS WITH INTERVAL VALUED MEMBERSHIP FUNCTIONS , 2009 .

[14]  Jianming Zhan,et al.  Intuitionistic (S, T)-fuzzy hyperquasigroups , 2008, Soft Comput..

[15]  Jianming Zhan,et al.  A new view of fuzzy hypernear-rings , 2008, Inf. Sci..

[16]  Bijan Davvaz,et al.  Extensions of fuzzy hyperideals in HV-semigroups , 2007, Soft Comput..

[17]  Bijan Davvaz,et al.  (∈, ∈ ∨ q)-fuzzy subnear-rings and ideals , 2006, Soft Comput..

[18]  W. Dudek,et al.  Intuitionistic fuzzy Hv-submodules , 2005, Inf. Sci..

[19]  M. Mathematical,et al.  Intuitionistic Hyperideals of Semihypergroups , 2006 .

[20]  Venkat Murali,et al.  Fuzzy points of equivalent fuzzy subsets , 2004, Inf. Sci..

[21]  Sandeep Kumar Bhakat,et al.  (∈, ∈∨q)-fuzzy Normal, Quasinormal and Maximal Subgroups , 2000, Fuzzy Sets Syst..

[22]  Mohammad Mehdi Zahedi,et al.  Hypergroup and join space induced by a fuzzy subset , 1997 .

[23]  S. K. Bhakat,et al.  (ε Ɛ V Q)-fuzzy Subgroup , 1996, Fuzzy Sets Syst..

[24]  陈永武 α , 1995 .

[25]  K. Atanassov New operations defined over the intuitionistic fuzzy sets , 1994 .

[26]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[27]  N. Kuroki Fuzzy semiprime ideals in semigroups , 1982 .

[28]  F. Marty Sur une generalization de la notion de groupe , 1934 .