On the performance of multiple objective genetic local search on the 0 / 1 knapsack problem . A comparative experiment
暂无分享,去创建一个
[1] A. Jaszkiewicz. Genetic local search for multi-objective combinatorial optimization , 2002, Eur. J. Oper. Res..
[2] Lothar Thiele,et al. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..
[3] E. L. Ulungu,et al. MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .
[4] B. Freisleben,et al. Genetic local search for the TSP: new results , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).
[5] É. Taillard. COMPARISON OF ITERATIVE SEARCHES FOR THE QUADRATIC ASSIGNMENT PROBLEM. , 1995 .
[6] Zbigniew Michalewicz,et al. Genetic Algorithms for the 0/1 Knapsack Problem , 1994, ISMIS.
[7] David E. Goldberg,et al. A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.
[8] P. Hajela,et al. Genetic search strategies in multicriterion optimal design , 1991 .
[9] Piotr Czyzżak,et al. Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .