Photothermal conversion of CO₂ into CH₄ with H₂ over Group VIII nanocatalysts: an alternative approach for solar fuel production.

The photothermal conversion of CO2 provides a straightforward and effective method for the highly efficient production of solar fuels with high solar-light utilization efficiency. This is due to several crucial features of the Group VIII nanocatalysts, including effective energy utilization over the whole range of the solar spectrum, excellent photothermal performance, and unique activation abilities. Photothermal CO2 reaction rates (mol h(-1) g(-1)) that are several orders of magnitude larger than those obtained with photocatalytic methods (μmol h(-1) g(-1)) were thus achieved. It is proposed that the overall water-based CO2 conversion process can be achieved by combining light-driven H2 production from water and photothermal CO2 conversion with H2. More generally, this work suggests that traditional catalysts that are characterized by intense photoabsorption will find new applications in photo-induced green-chemistry processes.

[1]  R. Behm,et al.  Reaction Intermediates and Side Products in the Methanation of CO and CO2 over Supported Ru Catalysts in H2-Rich Reformate Gases† , 2011 .

[2]  Henrik Junge,et al.  Wasserreduktion mit sichtbarem Licht: In-situ-EPR-Spektroskopie zeigt die Synergie zwischen optischen Übergängen und Elektronentransfer in Au-TiO2-Katalysatoren† , 2013 .

[3]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[4]  Tsunehiro Tanaka,et al.  Photocatalytic conversion of CO2 in water over layered double hydroxides. , 2012, Angewandte Chemie.

[5]  Stéphane Abanades,et al.  CO2 Dissociation and Upgrading from Two-Step Solar Thermochemical Processes Based on ZnO/Zn and SnO2/SnO Redox Pairs , 2010 .

[6]  Chunying Chen,et al.  Au@Pt nanostructures: a novel photothermal conversion agent for cancer therapy. , 2014, Nanoscale.

[7]  Jane H. Davidson,et al.  Efficient splitting of CO2 in an isothermal redox cycle based on ceria , 2014 .

[8]  Avelino Corma,et al.  Complete photocatalytic reduction of CO₂ to methane by H₂ under solar light irradiation. , 2014, Journal of the American Chemical Society.

[9]  M. Beller,et al.  Water reduction with visible light: synergy between optical transitions and electron transfer in Au-TiO(2) catalysts visualized by in situ EPR spectroscopy. , 2013, Angewandte Chemie.

[10]  N. Kruse,et al.  Catalytic CO2 Hydrogenation on Nickel: Novel Insight by Chemical Transient Kinetics† , 2011 .

[11]  Yan Dai,et al.  Freestanding palladium nanosheets with plasmonic and catalytic properties. , 2011, Nature nanotechnology.

[12]  Tsunehiro Tanaka,et al.  Photocatalytic reduction of CO2 using H2 as reductant over ATaO3 photocatalysts (A = Li, Na, K) , 2010 .

[13]  Chunhua Yan,et al.  Porous Pd nanoparticles with high photothermal conversion efficiency for efficient ablation of cancer cells. , 2014, Nanoscale.

[14]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[15]  Tingting Xu,et al.  Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. , 2012, Nano letters.

[16]  A. Takami,et al.  Laser-Induced Size Reduction of Noble Metal Particles , 1999 .

[17]  L. Schmidt-Mende,et al.  Photokatalytische Reduktion von CO 2 an TiO 2 und anderen Halbleitern , 2013 .

[18]  Huanjun Chen,et al.  Plasmonic harvesting of light energy for Suzuki coupling reactions. , 2013, Journal of the American Chemical Society.

[19]  Nastassja A. Lewinski,et al.  A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. , 2011, Small.

[20]  E. J. Anthony,et al.  Carbon capture and storage update , 2014 .

[21]  A. Majumdar,et al.  Opportunities and challenges for a sustainable energy future , 2012, Nature.

[22]  Younan Xia,et al.  Shape‐Controlled Synthesis of Metal Nanostructures: The Case of Palladium , 2007 .

[23]  H. García,et al.  Photocatalytic CO(2) reduction using non-titanium metal oxides and sulfides. , 2013, ChemSusChem.

[24]  Shuxin Ouyang,et al.  Nano‐photocatalytic Materials: Possibilities and Challenges , 2012, Advanced materials.

[25]  K. Lehtinen,et al.  Effect of Electrolyte Diffusion on the Growth of NaCl Particles by Water Vapour Condensation , 2003 .

[26]  N. Ahmed,et al.  Photocatalytic conversion of carbon dioxide into methanol using optimized layered double hydroxide catalysts , 2012 .

[27]  Jacob A. Moulijn,et al.  Mitigation of CO2 by Chemical Conversion: Plausible Chemical Reactions and Promising Products , 1996 .

[28]  Jacek K. Stolarczyk,et al.  Photocatalytic reduction of CO2 on TiO2 and other semiconductors. , 2013, Angewandte Chemie.

[29]  Tatsuya Kodama,et al.  Thermochemical cycles for high-temperature solar hydrogen production. , 2007 .

[30]  Tsunehiro Tanaka,et al.  Photoreduction of carbon dioxide by hydrogen over magnesium oxide , 2001 .

[31]  Yong Zhou,et al.  Zinc Gallogermanate Solid Solution: A Novel Photocatalyst for Efficiently Converting CO2 into Solar Fuels , 2013 .

[32]  Younan Xia,et al.  Gold nanocages covered by smart polymers for controlled release with near-infrared light , 2009, Nature materials.

[33]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[34]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[35]  T. Abe,et al.  CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method , 2009 .

[36]  A. Tlili,et al.  Creating added value with a waste: methylation of amines with CO2 and H2. , 2014, Angewandte Chemie.

[37]  M. Ghirardi,et al.  Photobiological hydrogen-producing systems. , 2009, Chemical Society reviews.

[38]  Avelino Corma,et al.  Titania supported gold nanoparticles as photocatalyst. , 2011, Physical chemistry chemical physics : PCCP.

[39]  K. Domen,et al.  Noble‐Metal/Cr2O3 Core/Shell Nanoparticles as a Cocatalyst for Photocatalytic Overall Water Splitting , 2006 .

[40]  Xueping Gao,et al.  Visible-light-driven oxidation of organic contaminants in air with gold nanoparticle catalysts on oxide supports. , 2008, Angewandte Chemie.

[41]  Wei Wang,et al.  Recent advances in catalytic hydrogenation of carbon dioxide. , 2011, Chemical Society reviews.

[42]  Shuxin Ouyang,et al.  Gold-nanorod-photosensitized titanium dioxide with wide-range visible-light harvesting based on localized surface plasmon resonance. , 2013, Angewandte Chemie.

[43]  H. Schobert,et al.  Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: Current state, chemical physics-based insights and outlook , 2009 .

[44]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[45]  Shean-Jen Chen,et al.  Nitrogen‐Doped Graphene Oxide Quantum Dots as Photocatalysts for Overall Water‐Splitting under Visible Light Illumination , 2014, Advanced materials.

[46]  Anis Tlili,et al.  Wertschöpfung aus einem Abfallstoff: Methylierung von Aminen mit CO2 und H2 , 2014 .

[47]  X. Duan,et al.  Plasmonic and catalytic AuPd nanowheels for the efficient conversion of light into chemical energy. , 2013, Angewandte Chemie.

[48]  Ronghuan He,et al.  The CO Poisoning Effect in PEMFCs Operational at Temperatures up to 200°C , 2003 .

[49]  Michael Grätzel,et al.  Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis. , 2010, Angewandte Chemie.