Effect of aluminum nitride concentration on different physical properties of low density polyethylene based nanocomposites

Abstract In this study, blends of low-density polyethylene (LDPE)/aluminum nitride (AlN) ceramic nanocomposites have been prepared through melt blending technique. Increased loading of AIN leads to reduction in tensile properties but improvement in rheological property (storage modulus). The rheological behavior tends to become unique at higher frequencies (≥10 rad/s). Differential scanning calorimetry (DSC) results show that the total crystallinity has decreased with the increase in AlN loading in the composites. It is seen that there is an improvement in electrical conductivity, dielectric constant, and flammability properties with the addition of AlN in the nanocomposites. The experimental data of tensile modulus, electrical conductivity, and dielectric constant have been fitted with some available theoretical models to check the models’ applicability for the present composite systems. Results show that only Nicolais-Nicodemo model, McCullough model, and Rahaman-Khastgir model are applicable for predicting the tensile modulus, electrical conductivity, and dielectric constant of the composites, respectively.

[1]  S. Ibrahim,et al.  Electrical and optical properties of functionalized multiwalled carbon nanotubes/poly (3-octylthiophene)/polystyrene composites , 2015 .

[2]  Junkai Wang,et al.  Investigation of thermal conductivity and dielectric properties of LDPE-matrix composites filled with hybrid filler of hollow glass microspheres and nitride particles , 2015 .

[3]  F. Szabó,et al.  Injection molding of ceramic filled polypropylene: The effect of thermal conductivity and cooling rate on crystallinity , 2013 .

[4]  Selvin P. Thomas,et al.  Dependence of electrical properties of polyethylene nanocomposites on aspect ratio of carbon nanotubes , 2013 .

[5]  Arun Kumar Pandey,et al.  Development of poly(dimethylsiloxane)–titania nanocomposites with controlled dielectric properties: Effect of heat treatment of titania on electrical properties , 2013 .

[6]  R. Jeziorska,et al.  Structure and mechanical properties of low‐density polyethylene/spherical silica nanocomposites prepared by melt mixing: The joint action of silica's size, functionality, and compatibilizer , 2012 .

[7]  T. K. Chaki,et al.  Modeling of DC conductivity for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through insitu polymerization of aniline in EVA matrix , 2012 .

[8]  T. K. Chaki,et al.  Consideration of interface polarization in the modeling of dielectric property for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through in-situ polymerization of aniline in EVA matrix , 2012 .

[9]  T. K. Chaki,et al.  Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes , 2012, Journal of Materials Science.

[10]  Z. Ahmad,et al.  Dielectric constant and refractive index of poly (siloxane–imide) block copolymer , 2011 .

[11]  C. Jeon,et al.  Effects of Ceramics on Dielectric Properties of Polystyrene / Ceramics Composites at Microwave Frequencies , 2011 .

[12]  C. Xie,et al.  Study on the properties of the epoxy‐matrix composites filled with thermally conductive AlN and BN ceramic particles , 2010 .

[13]  G. Malucelli,et al.  Effect of various alumina nano-fillers on the thermal and mechanical behaviour of low-density polyethylene–Al2O3 composites , 2010 .

[14]  N. Shimpi,et al.  Synthesis of nanoparticles and its effect on properties of elastomeric nanocomposites , 2010 .

[15]  Qiuyu Zhang,et al.  Thermal conductivity and mechanical properties of aluminum nitride filled linear low‐density polyethylene composites , 2009 .

[16]  M. Meyyappan,et al.  DC conductivity and interfacial polarization in PMMA/nanotube and PMMA/soot composites. , 2007, Journal of nanoscience and nanotechnology.

[17]  A. Melezhyk,et al.  Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites , 2007 .

[18]  Ying-Chung Chen,et al.  The dielectric properties of epoxy/AlN composites , 2007 .

[19]  S. Tjong,et al.  Electrical properties of low density polyethylene/ZnO nanocomposites: The effect of thermal treatments , 2006 .

[20]  Sie Chin Tjong,et al.  STRUCTURAL AND MECHANICAL PROPERTIES OF POLYMER NANOCOMPOSITES , 2006 .

[21]  Y. Leng,et al.  Processing and mechanical properties of HA/UHMWPE nanocomposites. , 2006, Biomaterials.

[22]  E. Kontou,et al.  Thermo-mechanical properties of LLDPE/SiO2 nanocomposites , 2006 .

[23]  S. Bourbigot,et al.  Polymer Nanocomposites: How to Reach Low Flammability? , 2006 .

[24]  M. Osman,et al.  Interparticle and particle-matrix interactions in polyethylene reinforcement and viscoelasticity , 2005 .

[25]  Rui Yang,et al.  Photo-stabilization of linear low density polyethylene by inorganic nano-particles , 2005 .

[26]  Sangyong Lee,et al.  Comparison of theoretical predictions and experimental values of the dielectric constant of epoxy/BaTiO3 composite embedded capacitor films , 2005 .

[27]  Bernhard Schartel,et al.  Layered silicate polymer nanocomposites: new approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system , 2004 .

[28]  T. D. Fornes,et al.  Modeling properties of nylon 6/clay nanocomposites using composite theories , 2003 .

[29]  Lynden A. Archer,et al.  Poly(ethylene oxide)/Silica Nanocomposites: Structure and Rheology , 2002 .

[30]  F. Shi,et al.  Towards model-based engineering of optoelectronic packaging materials: dielectric constant modeling , 2002 .

[31]  M. Rocha,et al.  Mechanical and rheological properties of composites based on polyolefin and mineral additives , 2002 .

[32]  Sabu Thomas,et al.  Thermal conductivity and thermal diffusivity analyses of low-density polyethylene composites reinforced with sisal, glass and intimately mixed sisal/glass fibres , 2000 .

[33]  G. Boiteux,et al.  Is the Maxwell–Sillars–Wagner model reliable for describing the dielectric properties of a core–shell particle–epoxy system? , 1998 .

[34]  A. I. Leonov,et al.  On the rheological modeling of filled polymers with particle-matrix interactions , 1995 .

[35]  N. Jayasundere,et al.  Dielectric constant for binary piezoelectric 0‐3 composites , 1993 .

[36]  C. Macosko,et al.  Effect of reinforcing fillers on the rheology of polymer melts , 1992 .

[37]  H. S. Maiti,et al.  Polystyrene-titania composite as a dielectric material , 1988 .

[38]  D. Bigg Mechanical properties of particulate filled polymers , 1987 .

[39]  Robert O. Pohl,et al.  The intrinsic thermal conductivity of AIN , 1987 .

[40]  R. Mccullough Generalized combining rules for predicting transport properties of composite materials , 1985 .

[41]  L. Nicolais,et al.  Strength of particulate composite , 1973 .

[42]  F. Bueche Electrical resistivity of conducting particles in an insulating matrix , 1972 .

[43]  O. Ishai,et al.  The Elastic Properties of Three-Phase Composites , 1967 .