Multiphotonenmikroskopie und In-vivo-Multiphotonentomographie in der dermatologischen Bildgebung

ZusammenfassungMultiphotonenmikroskopie (MPM) als In-vitro-Verfahren und In-vivo-Multiphotonentomographie (MPT) sind nichtinvasive Untersuchungstechniken, mit denen sowohl zelluläre als auch extrazelluläre Strukturen mit subzellulärer Auflösung beurteilt werden können. Die Verfahren sind damit sowohl in der klinischen Diagnostik als auch für wissenschaftliche Fragestellungen in der angewandten und Grundlagenforschung geeignet. MPM und MPT beruhen auf der Anregung biogener Fluorophore durch zwei oder mehr langwellige Photonen geringer Energie und der Induktion von „second harmonic generation“ (SHG). Damit lassen sich Zellverbände und Gewebe ähnlich einer histologischen Schnittgebung beurteilen und gleichzeitig Aussagen zum dermalen Fasernetzwerk treffen. Die MPT wurde zusätzlich für die nichtinvasive In-vivo-Diagnostik von Hauterkrankungen entwickelt. Dieser Review stellt die Möglichkeiten einer multiphotonenbasierten Diagnostik bei der Beurteilung transkutaner Stoffwechselvorgänge dar. Weitere Schwerpunkte sind der Einsatz zur Beurteilung physiologischer und pathologischer Veränderungen des dermalen Fasernetzwerkes sowie der Einsatz des Verfahrens zur Diagnostik von Dermatosen mit dermaler und epidermaler Beteiligung im Rahmen einer optischen Biopsie. Neben der morphologischen Einordnung von benignen und malignen Hauttumoren sowie allergischen und entzündlichen Hauterkrankungen können mit den Verfahren auch metabolische Prozesse erfasst werden.AbstractMultiphoton microscopy (MPM) and in vivo multiphoton tomography (MPT) are non-invasive examination techniques that allow for the evaluation of cellular as well as extra-cellular structures by working at a subcellular resolution level. These techniques are thus appropriate not only for clinical diagnostics but also for scientific issues in basic and applied research. MPM and MPT are based on the stimulation of biogenic fluorophores by two or more long-wave, low-energy photons and the evocation of second harmonic generation (SHG). Thus, the evaluation quality of cell clusters and tissues is similar to histological sections. At the same time the dermal fiber network can be assessed. MPT was developed further for the application in non-invasive in vivo diagnostics of skin diseases. This review presents the capabilities of multiphoton-based diagnostics in the evaluation of transcutaneous metabolism. In addition, the multiphoton techniques employed for the evaluation of physiologic and pathologic changes of the dermal fiber network as well as in the diagnosis of dermal and epidermal disorders by visual biopsy. Besides the morphological classification of benign and malignant skin tumors or allergic or inflammatory skin lesions, the techniques also allow for recording metabolic processes.

[1]  Karsten König,et al.  Morphological skin ageing criteria by multiphoton laser scanning tomography: non‐invasive in vivo scoring of the dermal fibre network , 2008, Experimental dermatology.

[2]  Iris Riemann,et al.  High-resolution multiphoton tomography of human skin with subcellular spatial resolution and picosecond time resolution. , 2003, Journal of biomedical optics.

[3]  Jeng-Wei Tjiu,et al.  Prediction of heat-induced collagen shrinkage by use of second harmonic generation microscopy. , 2006, Journal of biomedical optics.

[4]  Bruce J Tromberg,et al.  Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. , 2004, Biophysical journal.

[5]  Maria Goeppert-Mayer Über Elementarakte mit zwei Quantensprüngen , 1931 .

[6]  B R Masters,et al.  Multiphoton Excitation Microscopy of In Vivo Human Skin: Functional and Morphological Optical Biopsy Based on Three‐Dimensional Imaging, Lifetime Measurements and Fluorescence Spectroscopy a , 1998, Annals of the New York Academy of Sciences.

[7]  Karsten König,et al.  Clinical multiphoton tomography , 2008, Journal of biophotonics.

[8]  Alberto Diaspro,et al.  Biomedical Engineering Online Multi-photon Excitation Microscopy , 2006 .

[9]  I. Riemann,et al.  In vivo Drug Screening in Human Skin Using Femtosecond Laser Multiphoton Tomography , 2006, Skin Pharmacology and Physiology.

[10]  Karsten König,et al.  Intrinsic, solar and sunbed‐induced skin aging measured in vivo by multiphoton laser tomography and biophysical methods , 2009, Skin research and technology : official journal of International Society for Bioengineering and the Skin (ISBS) [and] International Society for Digital Imaging of Skin (ISDIS) [and] International Society for Skin Imaging.

[11]  Chen-Yuan Dong,et al.  Multiphoton microscopy: a new paradigm in dermatological imaging. , 2007, European journal of dermatology : EJD.

[12]  Chen-Yuan Dong,et al.  Evaluating cutaneous photoaging by use of multiphoton fluorescence and second-harmonic generation microscopy. , 2005, Optics letters.

[13]  Karsten König,et al.  In vivo assessment of human skin aging by multiphoton laser scanning tomography. , 2006, Optics letters.

[14]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[15]  B R Masters,et al.  Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. , 1997, Biophysical journal.

[16]  W. Webb,et al.  Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Maria Smedh,et al.  Multiphoton laser scanning microscopy on non-melanoma skin cancer: morphologic features for future non-invasive diagnostics. , 2008, The Journal of investigative dermatology.

[18]  Karsten König,et al.  Sensitivity and specificity of multiphoton laser tomography for in vivo and ex vivo diagnosis of malignant melanoma. , 2009, The Journal of investigative dermatology.

[19]  Jürgen Kiefer,et al.  Assessing the risk of skin damage due to femtosecond laser irradiation , 2008, Journal of biophotonics.

[20]  Karsten König,et al.  Spectral fluorescence lifetime detection and selective melanin imaging by multiphoton laser tomography for melanoma diagnosis , 2009, Experimental dermatology.

[21]  C. Garrett,et al.  Two-photon excitation in CaF2:Eu2+ , 2003 .

[22]  N. Dragomir,et al.  two-photon excitation , 2009 .

[23]  Andreas Volkmer,et al.  Femtosecond Two‐photon Excited Fluorescence of Melanin* , 1999, Photochemistry and photobiology.

[24]  C. Dong,et al.  Visualizing laser-skin interaction in vivo by multiphoton microscopy. , 2009, Journal of biomedical optics.

[25]  B. Tromberg,et al.  Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Chen-Yuan Dong,et al.  The effects of depilatory agents as penetration enhancers on human stratum corneum structures. , 2008, The Journal of investigative dermatology.

[27]  Karsten König,et al.  Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases , 2009, Journal of biophotonics.

[28]  F. Stracke,et al.  Influence of Nanoencapsulation on Human Skin Transport of Flufenamic Acid , 2006, Skin Pharmacology and Physiology.

[29]  Chen-Yuan Dong,et al.  Multiphoton microscopy in dermatological imaging. , 2009, Journal of dermatological science.

[30]  P. So,et al.  In vitro visualization and quantification of oleic acid induced changes in transdermal transport using two-photon fluorescence microscopy. , 2001, The Journal of investigative dermatology.

[31]  Robert Langer,et al.  Visualization of oleic acid-induced transdermal diffusion pathways using two-photon fluorescence microscopy. , 2003, The Journal of investigative dermatology.

[32]  Hatem Fessi,et al.  Enhancement of Topical Delivery from Biodegradable Nanoparticles , 2004, Pharmaceutical Research.

[33]  Chen-Yuan Dong,et al.  Characterizing point spread functions of two-photon fluorescence microscopy in turbid medium. , 2003, Journal of biomedical optics.

[34]  Karsten König,et al.  Laser tweezers and multiphoton microscopes in life sciences , 2000, Histochemistry and Cell Biology.

[35]  Gerald W. Lucassen,et al.  Two-photon fluorescence microscopy of in-vivo human skin , 2000, European Conference on Biomedical Optics.