Randomized Sparse Direct Solvers

We propose randomized direct solvers for large sparse linear systems, which integrate randomization into rank structured multifrontal methods. The use of randomization highly simplifies various essential steps in structured solutions, where fast operations on skinny matrix-vector products replace traditional complex ones on dense or structured matrices. The new methods thus significantly enhance the flexibility and efficiency of using structured methods in sparse solutions. We also consider a variety of techniques, such as some graph methods, the inclusion of additional structures, the concept of reduced matrices, information reuse, and adaptive schemes. The methods are applicable to various sparse matrices with certain rank structures. Particularly, for discretized matrices whose factorizations yield dense fill-in with some off-diagonal rank patterns, the factorizations cost about $O(n)$ flops in two dimensions (2D), and about $O(n)$ to $O(n^{4/3})$ flops in three dimensions (3D). The solution costs and ...

[1]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[2]  Jianlin Xia,et al.  Efficient Structured Multifrontal Factorization for General Large Sparse Matrices , 2013, SIAM J. Sci. Comput..

[3]  Joseph W. H. Liu,et al.  The Multifrontal Method for Sparse Matrix Solution: Theory and Practice , 1992, SIAM Rev..

[4]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[5]  Jianlin Xia,et al.  On the Complexity of Some Hierarchical Structured Matrix Algorithms , 2012, SIAM J. Matrix Anal. Appl..

[6]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[7]  Lexing Ying,et al.  Fast construction of hierarchical matrix representation from matrix-vector multiplication , 2009, J. Comput. Phys..

[8]  Lexing Ying,et al.  A fast direct solver for elliptic problems on general meshes in 2D , 2012, J. Comput. Phys..

[9]  Xiaoye S. Li,et al.  SuperLU Users'' Guide , 1997 .

[10]  O. Widlund,et al.  Domain Decomposition Methods in Science and Engineering XVI , 2007 .

[11]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[12]  Jianlin Xia,et al.  On 3D modeling of seismic wave propagation via a structured parallel multifrontal direct Helmholtz solver , 2011 .

[13]  Shivkumar Chandrasekaran,et al.  A Fast Solver for HSS Representations via Sparse Matrices , 2006, SIAM J. Matrix Anal. Appl..

[14]  Shivkumar Chandrasekaran,et al.  On the Numerical Rank of the Off-Diagonal Blocks of Schur Complements of Discretized Elliptic PDEs , 2010, SIAM J. Matrix Anal. Appl..

[15]  Israel Gohberg,et al.  Computations with quasiseparable polynomials and matrices , 2008, Theor. Comput. Sci..

[16]  Jianlin Xia,et al.  Fast algorithms for hierarchically semiseparable matrices , 2010, Numer. Linear Algebra Appl..

[17]  L. Grasedyck,et al.  Domain-decomposition Based ℌ-LU Preconditioners , 2007 .

[18]  Mario Bebendorf,et al.  Mathematik in den Naturwissenschaften Leipzig Existence of H-Matrix Approximants to the Inverse FE-Matrix of Elliptic Operators with L ∞-Coefficients , 2003 .

[19]  Ronald Kriemann,et al.  Parallel Black Box Domain Decomposition Based H-LU Preconditioning , 2005 .

[20]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[21]  C. Chui,et al.  Article in Press Applied and Computational Harmonic Analysis a Randomized Algorithm for the Decomposition of Matrices , 2022 .

[22]  W. Hackbusch A Sparse Matrix Arithmetic Based on $\Cal H$-Matrices. Part I: Introduction to ${\Cal H}$-Matrices , 1999, Computing.

[23]  Jianlin Xia,et al.  Robust and Efficient Multifrontal Solver for Large Discretized PDEs , 2012, High-Performance Scientific Computing.

[24]  Jianlin Xia,et al.  A Superfast Structured Solver for Toeplitz Linear Systems via Randomized Sampling , 2012, SIAM J. Matrix Anal. Appl..

[25]  Héctor D. Ceniceros,et al.  Fast algorithms with applications to pdes , 2005 .

[26]  G. Golub,et al.  A bibliography on semiseparable matrices* , 2005 .

[27]  S. Börm Efficient Numerical Methods for Non-local Operators , 2010 .

[28]  V. Pan,et al.  Randomized Preprocessing of Homogeneous Linear Systems of Equations , 2010 .

[29]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[30]  B. Engquist,et al.  Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation , 2010, 1007.4290.

[31]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[32]  Jianlin Xia,et al.  Superfast Multifrontal Method for Large Structured Linear Systems of Equations , 2009, SIAM J. Matrix Anal. Appl..

[33]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[34]  Steffen Börm,et al.  Data-sparse Approximation by Adaptive ℋ2-Matrices , 2002, Computing.

[35]  Per-Gunnar Martinsson,et al.  A Fast Randomized Algorithm for Computing a Hierarchically Semiseparable Representation of a Matrix , 2011, SIAM J. Matrix Anal. Appl..

[36]  Per-Gunnar Martinsson,et al.  A Fast Direct Solver for a Class of Elliptic Partial Differential Equations , 2009, J. Sci. Comput..

[37]  Reginald P. Tewarson,et al.  The product form of inverses of sparse matrices and graph theory. , 1967 .

[38]  S. Parter The Use of Linear Graphs in Gauss Elimination , 1961 .

[39]  Jianlin Xia,et al.  Acoustic inverse scattering via Helmholtz operator factorization and optimization , 2010, J. Comput. Phys..

[40]  D. Rose,et al.  Complexity Bounds for Regular Finite Difference and Finite Element Grids , 1973 .

[41]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[42]  I. Gohberg,et al.  On a new class of structured matrices , 1999 .

[43]  Alle-Jan van der Veen,et al.  Some Fast Algorithms for Sequentially Semiseparable Representations , 2005, SIAM J. Matrix Anal. Appl..