Six-band k⋅p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness

A six-band k⋅p model has been used to study the mobility of holes in Si inversion layers for different crystal orientations, for both compressive or tensile strain applied to the channel, and for a varying thickness of the Si layer. Scattering assisted by phonons and surface roughness has been accounted for, also comparing a full anisotropic model to an approximated isotropic treatment of the matrix elements. Satisfactory qualitative (and in several cases also quantitative) agreement is found between experimental data and theoretical results for the density and temperature dependence of the mobility for (001) surfaces, as well as for the dependence of the mobility on surface orientation [for the (011) and (111) surfaces]. Both compressive and tensile strain are found to enhance the mobility, while confinement effects result in a reduced hole mobility for a Si thickness ranging from 30 to 3 nm.

[1]  Charles S. Smith Piezoresistance Effect in Germanium and Silicon , 1954 .

[2]  W. Kohn,et al.  Motion of Electrons and Holes in Perturbed Periodic Fields , 1955 .

[3]  G. Dresselhaus,et al.  Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals , 1955 .

[4]  A. W. Overhauser,et al.  Scattering of Holes by Phonons in Germanium , 1956 .

[5]  J. M. Luttinger Quantum Theory of Cyclotron Resonance in Semiconductors: General Theory , 1956 .

[6]  T. Nee,et al.  Quantum Spectroscopy of the Low-Field Oscillations in the Surface Impedance , 1968 .

[7]  D. Colman,et al.  Mobility Anisotropy and Piezoresistance in Silicon p‐Type Inversion Layers , 1968 .

[8]  Peter Lawætz,et al.  Low-Field Mobility and Galvanomagnetic Properties of Holes in Germanium with Phonon Scattering , 1968 .

[9]  Hisashi Hara,et al.  Effects of Crystallographic Orientation on Mobility, Surface State Density, and Noise in p-Type Inversion Layers on Oxidized Silicon Surfaces , 1969 .

[10]  J. D. Wiley Valence-band deformation potentials for the III V compounds , 1970 .

[11]  L. Reggiani,et al.  On the effect of pressure on the band extrema of covalent semiconductors , 1970 .

[12]  Hisashi Hara,et al.  Mobility Anisotropy of Electrons in Inversion Layers on Oxidized Silicon Surfaces , 1971 .

[13]  Band Structure Investigation on p-Type Silicon Inversion Layers by Piezoresistance and Mobility Measurements , 1972 .

[14]  G. E. Pikus,et al.  Symmetry and strain-induced effects in semiconductors , 1974 .

[15]  L. Falicov,et al.  Hole cyclotron masses in silicon MOS devices , 1975 .

[16]  Y. Uemura,et al.  Hartree Approximation for the Electronic Structure of a p-Channel Inversion Layer of Silicon M.O.S. (Selected Topics in Semiconductor Physics ) -- (Surface) , 1975 .

[17]  James R. Chelikowsky,et al.  Nonlocal pseudopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors , 1976 .

[18]  G. Landwehr,et al.  Self-consistent calculations of electric subbands in p-type silicon inversion layers , 1976 .

[19]  Y. Uemura Theoretical considerations on quantization for carriers in mos structures , 1976 .

[20]  M. Saitoh Warm Electrons on the Liquid 4He Surface , 1977 .

[21]  T. Ando Screening Effect and Quantum Transport in a Silicon Inversion Layer in Strong Magnetic Fields , 1977 .

[22]  Angular dependence of hole—acoustic-phonon transition rates in silicon , 1982 .

[23]  F. Stern,et al.  Electronic properties of two-dimensional systems , 1982 .

[24]  A. Taguchi,et al.  Valence-band parameters and hole mobility of Ge-Si alloys-theory , 1983 .

[25]  Ferry,et al.  Surface roughness at the Si(100)-SiO2 interface. , 1985, Physical review. B, Condensed matter.

[26]  C. Moglestue,et al.  Self‐consistent calculation of electron and hole inversion charges at silicon–silicon dioxide interfaces , 1986 .

[27]  H. Sakaki,et al.  Interface roughness scattering in GaAs/AlAs quantum wells , 1987 .

[28]  Gold Electronic transport properties of a two-dimensional electron gas in a silicon quantum-well structure at low temperature. , 1987, Physical review. B, Condensed matter.

[29]  Singh,et al.  Hole transport theory in pseudomorphic Si1-xGex alloys grown on Si(001) substrates. , 1990, Physical review. B, Condensed matter.

[30]  S. Laux,et al.  Comments on "Monte Carlo simulation of transport in technologically significant semiconductors of the diamond and zinc-blende structures. II. Submicrometer MOSFETs" [with reply] , 1991 .

[31]  Chuang,et al.  Spin-orbit-coupling effects on the valence-band structure of strained semiconductor quantum wells. , 1992, Physical review. B, Condensed matter.

[32]  Fischetti,et al.  Monte Carlo study of electron transport in silicon inversion layers. , 1993, Physical review. B, Condensed matter.

[33]  B. A. Foreman,et al.  Effective-mass Hamiltonian and boundary conditions for the valence bands of semiconductor microstructures. , 1993, Physical review. B, Condensed matter.

[34]  Kiehl,et al.  Theoretical hole mobility in a narrow Si/SiGe quantum well. , 1993, Physical review. B, Condensed matter.

[35]  Vogl,et al.  Electronic-band parameters in strained Si1-xGex alloys on Si1-yGey substrates. , 1993, Physical review. B, Condensed matter.

[36]  Jasprit Singh,et al.  Monte Carlo studies of ohmic hole mobility in silicon and germanium: Examination of the optical phonon deformation potential , 1994 .

[37]  S. Takagi,et al.  On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration , 1994 .

[38]  S. Laux,et al.  Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys , 1996 .

[39]  T. C. Mcgill,et al.  EFFICIENT, NUMERICALLY STABLE MULTIBAND K.P TREATMENT OF QUANTUM TRANSPORTIN SEMICONDUCTOR HETEROSTRUCTURES , 1996 .

[40]  Friedrich Schäffler,et al.  High-mobility Si and Ge structures , 1997 .

[41]  Dimitri A. Antoniadis,et al.  LOCOS-induced stress effects on thin-film SOI devices , 1997 .

[42]  L. Peng Strain dependence of hole mass and optical anisotropy in (110) quantum wells , 1997 .

[43]  M. J. Kearney,et al.  The effect of alloy scattering on the mobility of holes in a quantum well , 1998 .

[44]  P. Vogl,et al.  Subband structure and mobility of two-dimensional holes in strained Si/SiGe MOSFET’s , 1998 .

[45]  B. Semmache,et al.  STRESS-DEPENDENT HOLE EFFECTIVE MASSES AND PIEZORESISTIVE PROPERTIES OF P-TYPE MONOCRYSTALLINE AND POLYCRYSTALLINE SILICON , 1998 .

[46]  J. A. López-Villanueva,et al.  Surface roughness at the Si–SiO2 interfaces in fully depleted silicon-on-insulator inversion layers , 1999 .

[47]  Comparison of hole mobility in LOCOS-isolated thin-film SOI p-channel MOSFET's fabricated on various SOI substrates , 1999 .

[48]  Transport in quantum wells in the presence of interface roughness , 2000, cond-mat/0002234.

[49]  N. Sugiyama,et al.  Electron and hole mobility enhancement in strained-Si MOSFET's on SiGe-on-insulator substrates fabricated by SIMOX technology , 2000, IEEE Electron Device Letters.

[50]  L. Selmi,et al.  Low field electron and hole mobility of SOI transistors fabricated on ultrathin silicon films for deep submicrometer technology application , 2001 .

[51]  J. A. López-Villanueva,et al.  Role of surface-roughness scattering in double gate silicon-on-insulator inversion layers , 2001 .

[52]  Shinichi Takagi,et al.  Advanced SOI p-MOSFETs with strained-Si channel on SiGe-on-insulator substrate fabricated by SIMOX technology , 2001 .

[53]  V. A. Fonoberov,et al.  Development of an eight-band theory for quantum dot heterostructures , 2001, cond-mat/0109275.

[54]  Intersubband hole-phonon and alloy disorder scattering in SiGe quantum wells , 2001 .

[55]  M. Fischetti Long-range Coulomb interactions in small Si devices. Part II. Effective electron mobility in thin-oxide structures , 2001 .

[56]  Richard C. Jaeger,et al.  Piezoresistive characteristics of short-channel MOSFETs on (100) silicon , 2001 .

[57]  Self-consistent calculations of inversion-layer mobility in highly doped silicon-on-insulator metal–oxide–semiconductor field-effect transistors , 2001 .

[58]  M. Fischetti,et al.  Monte Carlo simulation of double-gate silicon-on-insulator inversion layers: The role of volume inversion , 2001 .

[59]  Shinichi Takagi,et al.  Comprehensive Understanding of Electron and Hole Mobility Limited by Surface Roughness Scattering in Pure Oxides and Oxynitrides Based on Correlation Function of Surface Roughness , 2001 .

[60]  A. G. Cullis,et al.  Strained Si/SiGe n-channel MOSFETs: impact of cross-hatching on device performance , 2002 .

[61]  James L. Speidell,et al.  Electron and hole mobility enhancement in strained SOI by wafer bonding , 2002 .

[62]  Analysis of hole mobility and strain in a Si/Si0.5Ge0.5/Si metal oxide semiconductor field effect transistor , 2002 .

[63]  D. Antoniadis,et al.  Hole mobility enhancements and alloy scattering-limited mobility in tensile strained Si/SiGe surface channel metal-oxide-semiconductor field-effect transistors , 2002 .

[64]  M. Fischetti,et al.  On the enhanced electron mobility in strained-silicon inversion layers , 2002 .