An Algorithm for Computing the Limit Points of the Quasi-component of a Regular Chain

For a regular chain $R$, we propose an algorithm which computes the (non-trivial) limit points of the quasi-component of $R$, that is, the set $\bar{W(R)} \setminus W(R)$. Our procedure relies on Puiseux series expansions and does not require to compute a system of generators of the saturated ideal of $R$. We focus on the case where this saturated ideal has dimension one and we discuss extensions of this work in higher dimensions. We provide experimental results illustrating the benefits of our algorithms.

[1]  Maria Grazia Marinari,et al.  The shape of the Shape Lemma , 1994, ISSAC '94.

[2]  Xiao-Shan Gao,et al.  Computations with parametric equations , 1991, ISSAC '91.

[3]  G. Fischer,et al.  Plane Algebraic Curves , 1921, Nature.

[4]  Michael Kalkbrener,et al.  Algorithmic Properties of Polynomial Rings , 1998, J. Symb. Comput..

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Changbo Chen,et al.  Comprehensive Triangular Decomposition , 2007, CASC.

[7]  J. Maurer Puiseux expansion for space curves , 1980 .

[8]  Dominique Duval,et al.  About a New Method for Computing in Algebraic Number Fields , 1985, European Conference on Computer Algebra.

[9]  Marc Moreno Maza,et al.  On Fulton's Algorithm for Computing Intersection Multiplicities , 2012, CASC.

[10]  Xiao-Shan Gao,et al.  A Zero Structure Theorem for Differential Parametric Systems , 1993, J. Symb. Comput..

[11]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[12]  Joris van der Hoeven,et al.  Characteristic set method for differential-difference polynomial systems , 2009, J. Symb. Comput..

[13]  Changbo Chen,et al.  Algorithms for computing triangular decomposition of polynomial systems , 2012, J. Symb. Comput..

[14]  J. Ritt,et al.  Differential Equations from the Algebraic Standpoint , 1933, Nature.

[15]  V. Lenin,et al.  The United States of America , 2002, Government Statistical Agencies and the Politics of Credibility.

[16]  Kazuhiro Yokoyama,et al.  Localization and Primary Decomposition of Polynomial Ideals , 1996, J. Symb. Comput..

[17]  D. Mumford The red book of varieties and schemes , 1988 .

[18]  D. Duval Rational Puiseux expansions , 1989 .

[19]  Teo Mora,et al.  An Algorithm for Computing Analytic Branches of Space Curves at Singular Points , 1992 .

[20]  François Boulier,et al.  Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.

[21]  Changbo Chen,et al.  Triangular decomposition of semi-algebraic systems , 2013, J. Symb. Comput..

[22]  Changbo Chen,et al.  Computing cylindrical algebraic decomposition via triangular decomposition , 2009, ISSAC '09.

[23]  M. M. Maza,et al.  Well known theorems on triangular systems and the D5 principle , 2006 .

[24]  C. Hoffmann Algebraic curves , 1988 .

[25]  Marc Moreno Maza,et al.  When does (T) equal sat(T)? , 2008, ISSAC '08.

[26]  Bican Xia,et al.  A complete algorithm for automated discovering of a class of inequality-type theorems , 2001, Science in China Series F Information Sciences.

[27]  Marc Moreno Maza,et al.  The RegularChains library in MAPLE , 2005, SIGS.

[28]  D.A. Leonard Ideals, varieties, and algorithms [Book Review] , 2000, IEEE Transactions on Information Theory.

[29]  Evelyne Hubert,et al.  Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..

[30]  Marc Moreno Maza,et al.  When does equal sat(T)? , 2011, J. Symb. Comput..