Robust GCV choice of the regularization parameter for correlated data
暂无分享,去创建一个
[1] Press,et al. Class of fast methods for processing irregularly sampled or otherwise inhomogeneous one-dimensional data. , 1995, Physical review letters.
[2] M. A. Lukas. Comparisons of parameter choice methods for regularization with discrete noisy data , 1998 .
[3] Chong Gu,et al. Smoothing spline Gaussian regression: more scalable computation via efficient approximation , 2004 .
[4] F. Bauer,et al. Local Solutions to Inverse Problems in Geodesy , 2006 .
[5] Chong Gu,et al. Optimal Smoothing with Correlated Data , 2004 .
[6] M. A. Lukas. Robust generalized cross-validation for choosing the regularization parameter , 2006 .
[7] D. Titterington,et al. A cautionary note about crossvalidatory choice , 1989 .
[8] M. A. Lukas. Asymptotic optimality of generalized cross-validation for choosing the regularization parameter , 1993 .
[9] Convergence rates for moment collocation solutions of linear operator equations , 1995 .
[10] G. Wahba. Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .
[11] Grace Wahba,et al. Spline Models for Observational Data , 1990 .
[12] Douglas Nychka,et al. Confidence Intervals for Nonparametric Curve Estimates , 2001 .
[13] Per Christian Hansen,et al. Rank-Deficient and Discrete Ill-Posed Problems , 1996 .
[14] R. Moyeed,et al. Making robust the cross-validatory choice of smoothing parameter in spline smoothing regression , 1989 .
[15] W. Wamsteker,et al. Estimation of regularization parameters in multiple-image deblurring , 2004 .
[16] D. S. Mitrinovic,et al. Classical and New Inequalities in Analysis , 1992 .
[17] Yuhong Yang,et al. Nonparametric Regression with Correlated Errors , 2001 .
[18] Ker-Chau Li,et al. Asymptotic optimality of CL and generalized cross-validation in ridge regression with application to spline smoothing , 1986 .
[19] Adhemar Bultheel,et al. Multiple wavelet threshold estimation by generalized cross validation for images with correlated noise , 1999, IEEE Trans. Image Process..
[20] Per Christian Hansen,et al. REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems , 1994, Numerical Algorithms.
[21] Mark A. Lukas,et al. Comparing parameter choice methods for regularization of ill-posed problems , 2011, Math. Comput. Simul..
[22] Behavior near zero of the distribution of GCV smoothing parameter estimates , 1995 .
[23] Samuel C. Kou,et al. Smoothers and the Cp, Generalized Maximum Likelihood, and Extended Exponential Criteria , 2002 .
[24] Peter Craven,et al. Smoothing noisy data with spline functions , 1978 .
[25] B. Efron. Selection Criteria For Scatterplot Smoothers , 1999 .