The MegaMapper: A Stage-5 Spectroscopic Instrument Concept for the Study of Inflation and Dark Energy

In this white paper, we present the MegaMapper concept. The MegaMapper is a proposed ground-based experiment to measure Inflation parameters and Dark Energy from galaxy redshifts at $2<z<5$. In order to achieve path-breaking results with a mid-scale investment, the MegaMapper combines existing technologies for critical path elements and pushes innovative development in other design areas. To this aim, we envision a 6.5-m Magellan-like telescope, with a newly designed wide field, coupled with DESI spectrographs, and small-pitch robots to achieve multiplexing of at least 26,000. This will match the expected achievable target density in the redshift range of interest and provide a 10x capability over the existing state-of the art, without a 10x increase in project budget.

[1]  M. Sullivan,et al.  Snowmass2021 Cosmic Frontier White Paper: Enabling Flagship Dark Energy Experiments to Reach their Full Potential , 2022, 2204.01992.

[2]  R. Wechsler,et al.  Snowmass2021 Theory Frontier White Paper: Data-Driven Cosmology , 2022, 2203.07946.

[3]  A. Slosar,et al.  Snowmass2021 Cosmic Frontier White Paper: Cosmology and Fundamental Physics from the three-dimensional Large Scale Structure , 2022, 2203.07506.

[4]  J. Newman,et al.  Snowmass2021 Cosmic Frontier White Paper: Rubin Observatory after LSST , 2022, 2203.07220.

[5]  Andrew P. Hearin,et al.  Snowmass2021 Cosmic Frontier White Paper: High Density Galaxy Clustering in the Regime of Cosmic Acceleration , 2022, 2203.07291.

[6]  A. Leauthaud,et al.  Snowmass2021 Cosmic Frontier White Paper: Dark Matter Physics from Halo Measurements , 2022, 2203.07354.

[7]  Duncan A. Brown,et al.  Snowmass2021 Cosmic Frontier White Paper: Observational Facilities to Study Dark Matter , 2022, 2203.06200.

[8]  Ryan E. Keeley,et al.  Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies , 2022, Journal of High Energy Astrophysics.

[9]  M. White,et al.  Cosmology at high redshift — a probe of fundamental physics , 2021, Journal of Cosmology and Astroparticle Physics.

[10]  Ting Li,et al.  The Maunakea Spectroscopic Explorer , 2019, 1907.07192.

[11]  J. Rhodes,et al.  FOBOS: A Next-Generation Spectroscopic Facility at the W. M. Keck Observatory , 2019, 1907.07195.

[12]  J. Brinchmann,et al.  SpecTel: A 10-12 meter class Spectroscopic Survey Telescope , 2019, 1907.06797.

[13]  R. B. Barreiro,et al.  Planck 2018 results. IX. Constraints on primordial non-Gaussianity , 2019, 1905.05697.

[14]  Christopher W. Stubbs,et al.  Report on LSST Next-generation Instrumentation Workshop, April 11, 12 2019 , 2019, 1905.04669.

[15]  M. White,et al.  Cosmology with dropout selection: straw-man surveys & CMB lensing , 2019, Journal of Cosmology and Astroparticle Physics.

[16]  A. Slosar,et al.  Scratches from the Past: Inflationary Archaeology through Features in the Power Spectrum of Primordial Fluctuations , 2019, 1903.09883.

[17]  J. Newman,et al.  Wide-field Multi-object Spectroscopy to Enhance Dark Energy Science from LSST , 2019 .

[18]  Julian Borrill,et al.  Inflation and Dark Energy from spectroscopy at $z>2$ , 2019, 1903.09208.

[19]  Michelle Lochner,et al.  Deep Multi-object Spectroscopy to Enhance Dark Energy Science from LSST , 2019, 1903.09325.

[20]  Benjamin Rose,et al.  Dark Matter Science in the Era of LSST , 2019, 1903.04425.

[21]  Ryan E. Keeley,et al.  Primordial Non-Gaussianity , 2019, 1903.04409.

[22]  Nathan Golovich,et al.  Probing the Fundamental Nature of Dark Matter with the Large Synoptic Survey Telescope , 2019, 1902.01055.

[23]  Jeffrey D. Crane,et al.  SDSS-V: Pioneering Panoptic Spectroscopy , 2017, 1711.03234.

[24]  Michael J. Sholl,et al.  The DESI Experiment Part II: Instrument Design , 2016, 1611.00037.

[25]  Puragra Guhathakurta,et al.  Maximizing Science in the Era of LSST: A Community-Based Study of Needed US Capabilities , 2016, 1610.01661.

[26]  Matias Zaldarriaga,et al.  Testing Inflation with Large Scale Structure: Connecting Hopes with Reality , 2014, 1412.4671.

[27]  Abhilash Mishra,et al.  Inflationary Freedom and Cosmological Neutrino Constraints , 2014, 1401.7022.

[28]  V. Mukhanov INFLATION: THEORY AND OBSERVATIONS , 2010 .

[29]  David J. Schlegel,et al.  Spectro-Perfectionism: An Algorithmic Framework for Photon Noise-Limited Extraction of Optical Fiber Spectroscopy , 2009, 0911.2689.

[30]  Roy Maartens,et al.  Dark Energy and Modified Gravity , 2008, 0811.4132.

[31]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[32]  Astro2020 Science White Paper Wide-field Multi-object Spectroscopy to Enhance Dark Energy Science from LSST , 2019 .

[33]  A. Myers,et al.  The MegaMapper : a z > 2 spectroscopic instrument for the study of Inflation and Dark Energy Thematic Areas , 2019 .

[34]  ournal of C osmology and A stroparticle hysics J Effective action approach to cosmological perturbations in dark energy and modified gravity , 2022 .