Notes on Hazard-Free Circuits

The problem of constructing hazard-free Boolean circuits (those avoiding electronic glitches) dates back to the 1940s and is an important problem in circuit design and even in cybersecurity. We show that a DeMorgan circuit is hazard-free if and only if the circuit produces (purely syntactically) all prime implicants as well as all prime implicates of the Boolean function it computes. This extends to arbitrary DeMorgan circuits a classical result of Eichelberger [IBM J. Res. Develop., 9 (1965)] showing this property for special depth-two circuits. Via an amazingly simple proof, we also strengthen a recent result Ikenmeyer et al. [J. ACM, 66:4 (2019)]: not only the complexities of hazard-free and monotone circuits for monotone Boolean functions do coincide, but every optimal hazard-free circuit for a monotone Boolean function must be monotone. Then we show that hazard-free circuit complexity of a very simple (non-monotone) Boolean function is super-polynomially larger than its unrestricted circuit complexity. This function accepts a Boolean n ˆ n matrix iff every row and every column has exactly one 1-entry. Finally, we show that every Boolean function of n variables can be computed by a hazard-free circuit of size Op2{nq.

[1]  Frederic T. Chong,et al.  Complete information flow tracking from the gates up , 2009, ASPLOS.

[2]  Edward B. Eichelberger,et al.  Hazard Detection in Combinational and Sequential Switching Circuits , 1964, IBM J. Res. Dev..

[3]  David A. Huffman The Design and Use of Hazard-Free Switching Networks , 1957, JACM.

[4]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[5]  Michael Yoeli,et al.  Application of Ternary Algebra to the Study of Static Hazards , 1964, JACM.

[6]  Stéphan Thomassé,et al.  On the complexity of partial derivatives , 2016, STACS.

[7]  Nitin Saurabh,et al.  On the complexity of detecting hazards , 2020, Inf. Process. Lett..

[8]  David E. Muller,et al.  Complexity in Electronic Switching Circuits , 1956, IRE Trans. Electron. Comput..

[9]  Noga Alon,et al.  The monotone circuit complexity of boolean functions , 1987, Comb..

[10]  Henry Y. H. Chuang,et al.  A Logic Hazard Detection and Elimination Method , 1974, Inf. Control..

[11]  Ran Raz,et al.  Monotone circuits for matching require linear depth , 1990, STOC '90.

[12]  Claude E. Shannon,et al.  The synthesis of two-terminal switching circuits , 1949, Bell Syst. Tech. J..

[13]  A. Razborov Lower bounds on monotone complexity of the logical permanent , 1985 .

[14]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[15]  Willard Van Orman Quine,et al.  A Way to Simplify Truth Functions , 1955 .

[16]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[17]  Harold W. Kuhn,et al.  The Hungarian method for the assignment problem , 1955, 50 Years of Integer Programming.

[18]  Johan Håstad,et al.  A Simple Lower Bound for Monotone Clique Using a Communication Game , 1992, Inf. Process. Lett..

[19]  Paul T. Hulina,et al.  Elimination of Static and Dynamic Hazards for Multiple Input Changes in Combinatorial Switching Circuits , 1972, Inf. Control..

[20]  Wei Hu,et al.  On the Complexity of Generating Gate Level Information Flow Tracking Logic , 2012, IEEE Transactions on Information Forensics and Security.

[21]  Ingo Wegener,et al.  The complexity of Boolean functions , 1987 .

[22]  Éva Tardos,et al.  The gap between monotone and non-monotone circuit complexity is exponential , 1988, Comb..

[23]  Samuel Hawks Caldwell Switching circuits and logical design , 1958 .

[24]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[25]  Stephan Korner Experience and Theory: An Essay in the Philosophy of Science , 1966 .

[26]  Christoph Lenzen,et al.  On the complexity of hazard-free circuits , 2017, STOC.