Contribution of Remote Sensing for the Mapping of the Yaoundé Metadiorites

Geologists face a number of problems, mainly related to the difficulty of covering the entire terrain, leading to various pieces of information collected and its extrapolation for drawing maps. To overcome these problems, we have proposed to use remote sensing which is a current tool for rock mapping. Remote sensing is a modern tool to highlight several information that conventional mapping methods do not allow. Thus, the objective of this work is to update the geological contours of the Yaoundé metadiorites by processing satellite images coupled with the classical approach. Sentinel 1-A radar images were used. A textural analysis of these images was carried out using the GLCM (Grey Level Co-occurrence Matrix) method, resulting in eight co-occurrence indices, among which three were chosen to perform colored compositions. The colored compositions obtained are VMH and HMV. And the contrasts obtained were compared with maps from previous work and also with field work. The metasedimentary rocks (kyanite - garnet migmatites and garnet micaschists) and metaigneous rocks (metadiorite) constitute the metamorphic complex distinctly mapped by exploiting remote sensing data, superposition maps from previous work and integrating the new sampling points. Remote sensing in geological mapping thus plays an important role mainly in the urbanized study area as it detects the metadiorites under the metasediments despite the existence of anthropogenic works and low vegetation cover.

[1]  B. Tassongwa,et al.  Geological study of a Mewoulou-Nkolbisson ductile strike-slip fault segment (Western Yaoundé, Cameroon): evidence of hazards related to structural landforms , 2022, Arabian Journal of Geosciences.

[2]  Sylvestre Ganno,et al.  Anatexis of metadiorite from the Yaoundé area, Central African Orogenic Belt in Cameroon: implications on the genesis of in-source granodiorite leucosomes , 2022, Arabian Journal of Geosciences.

[3]  C. Nkoumbou,et al.  Petrology, geochemistry, Ar Ar isotopes of an arc related calk-alkaline pluton from Mamb (Pan-African Yaounde group, Cameroon): A testimony to the subduction of a hot oceanic crust , 2021 .

[4]  C. McFarlane,et al.  Rutile LA-ICP-MS U–Pb geochronology and implications for tectono-metamorphic evolution in the Yaoundé Group of the Neoproterozoic Central African Orogeny , 2020 .

[5]  C. McFarlane,et al.  Geochemistry of rutile from the Pan-African Yaoundé metamorphic group: Implications for provenance and conditions of formation , 2020 .

[6]  Joachim Etouna,et al.  Radarsat-1 image processing for regional-scale geological mapping with mining vocation under dense vegetation and equatorial climate environment, Southwestern Cameroon , 2018, The Egyptian Journal of Remote Sensing and Space Science.

[7]  Anil K. Jain,et al.  Texture Analysis , 2018, Handbook of Image Processing and Computer Vision.

[8]  P. Barbey,et al.  The Adamawa-Yadé domain, a piece of Archaean crust in the Neoproterozoic Central African Orogenic belt (Bafia area, Cameroon) , 2017 .

[9]  Xian‐Hua Li,et al.  Improving geochronological framework of the Pan-African orogeny in Cameroon: New SIMS zircon and monazite U-Pb age constraints , 2017 .

[10]  N. Hammad,et al.  Cartographie des linéaments géologiques en domaine aride par extraction semi-automatique à partir d’images satellitaires: Exemple à la région d’El Kseïbat (Sahara algérien) , 2016 .

[11]  P. Barbey,et al.  Pre-collisional geodynamic context of the southern margin of the Pan-African fold belt in Cameroon , 2014 .

[12]  W. Paradella,et al.  Mapping iron-mineralized laterite environments based on textural attributes from MAPSAR image simulation - SAR-R99B (SIVAM/SIPAM) in the Amazon region , 2011 .

[13]  N. Emmanuel,et al.  Plates Amalgamation and Plate Destruction, the Western Gondwana History , 2011 .

[14]  Na Li Textural and Rule-based Lithological Classification of Remote Sensing Data, and Geological Mapping in Southwestern Prieska Sub-basin, Transvaal Supergroup, South Africa , 2010 .

[15]  P. Barbey,et al.  Geological context of the Boumnyebel talcschists (Cameroun): Inferences on the Pan-African Belt of Central Africa , 2010 .

[16]  Clément Yonta Ngoune Le contexte géologique des indices de talc de la région de Boumnyebel (Chaîne panafricaine d'Afrique Centrale, Cameroun) , 2010 .

[17]  J. M. Ondoa,et al.  Tectonic evolution of the Yaoundé segment of the Neoproterozoic Central African Orogenic Belt in southern Cameroon , 2007 .

[18]  V. Ngako,et al.  Derivation of detrital rutile in the Yaoundé region from the Neoproterozoic Pan-African belt in southern Cameroon (Central Africa) , 2006 .

[19]  B. Leblon,et al.  Rock unit discrimination on Landsat TM, SIR-C and Radarsat images using spectral and textural information , 2004 .

[20]  Fred A. Kruse,et al.  Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping , 2003, IEEE Trans. Geosci. Remote. Sens..

[21]  James K. Crowley,et al.  Comparative alteration mineral mapping using visible to shortwave infrared (0.4-2.4 μm) Hyperion, ALI, and ASTER imagery , 2003, IEEE Trans. Geosci. Remote. Sens..

[22]  V. Ngako,et al.  Pan-African tectonic evolution in central and southern Cameroon: transpression and transtension during sinistral shear movements , 2003 .

[23]  James T. Teller,et al.  Orbital radar studies of paleodrainages in the central Namib Desert. , 2000 .

[24]  F. El-Baz,et al.  Subsurface Imaging by RADARSAT: Comparison with Landsat TM Data and Implications for Ground Water in the Selima Area, Northwestern Sudan , 1999 .

[25]  A. Pouclet,et al.  Le volcanisme fissural néoprotérozoïque des séries du Dja inférieur, de Yokadouma (Cameroun) et de Nola (RCA) — Signification géotectonique , 1997 .

[26]  John F. McCauley,et al.  The use of multifrequency and polarimetric SIR-C/X-SAR data in geologic studies of Bir Safsaf, Egypt , 1997 .

[27]  V. Singhroy,et al.  Geological Interpretation of Integrated SAR Images in the Azraq Area of Jordan , 1995 .

[28]  Philip A. Davis,et al.  Surficial geology of the Safsaf region, south-central Egypt, derived from remote-sensing and field data☆ , 1993 .

[29]  T. Reed,et al.  Digital image processing techniques for enhancement and classification of SeaMARC II side scan sonar imagery , 1989 .

[30]  P. Barbey,et al.  Origin and evolution of the late Precambrian high-grade Yaoundé gneisses (Cameroon) , 1988 .

[31]  Charles Elachi,et al.  Microwave Penetration and Attenuation in Desert Soil: A Field Experiment with the Shuttle Imaging Radar , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[32]  G. Schaber,et al.  Shuttle Imaging Radar: Physical Controls on Signal Penetration and Subsurface Scattenng in the Eastern Sahara , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[33]  M. Sukumar,et al.  DISCRIMINATING LINEAMENTS FROM THE ASTER IMAGE BY ANALYZING THE OBJECT PROPERTIES , 2015 .

[34]  L. Ratschbacher,et al.  Pan-African metamorphic evolution in the southern Yaounde Group (Oubanguide Complex, Cameroon) as revealed by EMP-monazite dating and thermobarometry of garnet metapelites , 2011 .

[35]  V. Ngako,et al.  Structures régionales de la chaîne panafricaine du Nord-Cameroun , 1992 .

[36]  P. Barbey,et al.  Evolution structurale et métamorphique des schistes de Mbalmayo (Cameroun). Implications pour la structure de la zone mobile pan-africaine d'Afrique centrale, au contact du craton du Congo , 1986 .

[37]  M.,et al.  Statistical and Structural Approaches to Texture , 2022 .