Controller design for a class of nonlinear systems with input saturation using convex optimization

Abstract In this paper, we propose a new design strategy for nonlinear systems with input saturation. The resulting nonlinear controllers are locally asymptotically stabilizing the origin. The proposed methodology is based on exact feedback linearization which is used to reformulate the nonlinear system as a linear system having state-dependent input saturation. Linear saturating state feedback controllers and soft variable-structure controllers are developed based on this system formulation. The resulting convex optimization problems can be written in terms of linear matrix inequalities and sum of squares conditions for which efficient solvers exist. Polynomial approximation based on Legendre polynomials is used to extend the methodology to a more general class of nonlinear systems. To demonstrate the benefit of this design method, a stabilizing controller for a single link manipulator with flexible joint is developed.

[1]  A. Isidori Nonlinear Control Systems , 1985 .

[2]  James Lam,et al.  Global stabilization and restricted tracking with bounded feedback for multiple oscillator systems , 2010, Syst. Control. Lett..

[3]  Guang-Ren Duan,et al.  $L_{\infty}$ and $L_{2}$ Low-Gain Feedback: Their Properties, Characterizations and Applications in Constrained Control , 2011, IEEE Transactions on Automatic Control.

[4]  Mark W. Spong,et al.  Robot dynamics and control , 1989 .

[5]  Jürgen Adamy,et al.  Vereinfachte schnelle Regelung von linearen Systemen mit Stellgrößenbeschränkungen , 2011, Autom..

[6]  Masoud Soroush,et al.  Nonlinear controller design for input-constrained, multivariable processes , 2002 .

[7]  Guido Herrmann,et al.  ANTI-WINDUP SYNTHESIS FOR NONLINEAR DYNAMIC INVERSION CONTROLLERS , 2006 .

[8]  Tingshu Hu,et al.  On improving the performance with bounded continuous feedback laws , 2002, IEEE Trans. Autom. Control..

[9]  Guang-Ren Duan,et al.  An improved treatment of saturation nonlinearity with its application to control of systems subject to nested saturation , 2011, Autom..

[10]  Zongli Lin,et al.  An analysis and design method for linear systems under nested saturation , 2003, Syst. Control. Lett..

[11]  Luca Zaccarian,et al.  Output feedback design for saturated linear plants using deadzone loops , 2009, Autom..

[12]  Jürgen Adamy,et al.  Fuzzy-Systeme mit inhärenter Dynamik: ein Überblick (A Survey on Fuzzy Systems with Inherent Dynamics) , 2004 .

[13]  Guang-Ren Duan,et al.  A parametric periodic Lyapunov equation with application in semi-global stabilization of discrete-time periodic systems subject to actuator saturation , 2010, Proceedings of the 2010 American Control Conference.

[14]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[15]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[16]  Pablo A. Parrilo,et al.  Nonlinear control synthesis by convex optimization , 2004, IEEE Transactions on Automatic Control.

[17]  Jürgen Adamy,et al.  Strukturvariable Regelungen mittels impliziter Ljapunov-Funktionen , 1991 .

[18]  H. Ichihara,et al.  State Feedback Synthesis for Polynomial Systems with Input Saturation using Convex Optimization , 2007, 2007 American Control Conference.

[19]  A. Vicino,et al.  On convexification of some minimum distance problems , 1999, 1999 European Control Conference (ECC).

[20]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[21]  Jürgen Adamy,et al.  A fast nonlinear control method for linear systems with input saturation , 2011, Autom..

[22]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[23]  Z. Jarvis-Wloszek,et al.  Lyapunov Based Analysis and Controller Synthesis for Polynomial Systems using Sum-of-Squares Optimization , 2003 .

[24]  A. Papachristodoulou,et al.  Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[25]  Tingshu Hu,et al.  An analysis and design method for linear systems subject to actuator saturation and disturbance , 2002, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[26]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[27]  Graziano Chesi,et al.  Estimating the domain of attraction for non-polynomial systems via LMI optimizations , 2009, Autom..

[28]  Graziano Chesi,et al.  LMI Techniques for Optimization Over Polynomials in Control: A Survey , 2010, IEEE Transactions on Automatic Control.

[29]  Jürgen Adamy,et al.  Implicit Lyapunov functions and isochrones of linear systems , 2005, IEEE Transactions on Automatic Control.

[30]  A. Flemming,et al.  Soft variable-structure controls: a survey , 2004, Autom..

[31]  Francis J. Doyle,et al.  An anti-windup input–output linearization scheme for SISO systems , 1999 .