Multigrid methods in science and engineering

By combining computation from several scales of mesh fineness, multigrid and multilevel methods can improve speed and accuracy in a wide variety of science and engineering applications. The article sketches the history of the techniques, explains the basics, and gives pointers to the literature and current research.

[1]  R. P. Fedorenko A relaxation method for solving elliptic difference equations , 1962 .

[2]  C. Douglas Multi-Grid Algorithms with Applications to Elliptic Boundary Value Problems , 1984 .

[3]  R. Bank,et al.  Sharp Estimates for Multigrid Rates of Convergence with General Smoothing and Acceleration , 1985 .

[4]  G. P. Astrakhantsev An iterative method of solving elliptic net problems , 1971 .

[5]  Craig C. Douglas,et al.  A tupleware approach to domain decomposition methods , 1991 .

[6]  Craig C. Douglas A Review of Numerous Parallel Multigrid Methods , 1996, Applications on Advanced Architecture Computers.

[7]  J. Douglas,et al.  A unified convergence theory for abstract multigrid or multilevel algorithms, serial and parallel , 1993 .

[8]  R. P. Fedorenko The speed of convergence of one iterative process , 1964 .

[9]  Achi Brandt,et al.  Multigrid method for nearly singular and slightly indefinite problems , 1986 .

[10]  D. Rose,et al.  Analysis of a multilevel iterative method for nonlinear finite element equations , 1982 .

[11]  P. Vassilevski,et al.  Algebraic multilevel preconditioning methods. I , 1989 .

[12]  K. Stüben,et al.  Multigrid methods: Fundamental algorithms, model problem analysis and applications , 1982 .

[13]  Ullrich Rüde Mathematical and Computational Techniques for Multilevel Adaptive Methods , 1987 .

[14]  A. Brandt,et al.  Multigrid Solutions to Elliptic Flow Problems , 1979 .

[15]  W. Hackbusch,et al.  Analysis of a damped nonlinear multilevel method , 1989 .

[16]  G. TEMPLE,et al.  Relaxation Methods in Engineering Science , 1942, Nature.

[17]  Achi Brandt,et al.  Multigrid solvers on parallel computers , 1981 .

[18]  J. W. Ruge,et al.  4. Algebraic Multigrid , 1987 .

[19]  R. Bank,et al.  The hierarchical basis multigrid method , 1988 .

[20]  Graham Horton,et al.  The time‐parallel multigrid method , 1992 .

[21]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[22]  Piet Hemker,et al.  On the order of prolongations and restrictions in multigrid procedures , 1990 .

[23]  K. Stüben Algebraic multigrid (AMG): experiences and comparisons , 1983 .

[24]  Craig C. Douglas,et al.  Caching in with Multigrid Algorithms: Problems in Two Dimensions , 1996, Parallel Algorithms Appl..

[25]  Randolph E. Bank,et al.  An optimal order process for solving finite element equations , 1981 .

[26]  Klaus Ressel,et al.  Parallel multigrid: grid partitioning versus domain decomposition , 1991 .

[27]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[28]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[29]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .