Variational method for the derivative nonlinear Schrödinger equation with computational applications
暂无分享,去创建一个
[1] J. Hollweg,et al. Kinetic Alfvén wave revisited , 1999 .
[2] K. Kajiwara,et al. Solution and Integrability of a Generalized Derivative Nonlinear Schrödinger Equation , 1997 .
[3] P. Sulem,et al. Coupling between nonlinear Alfvén waves and reduced magnetohydrodynamics for compressible fluids , 1999 .
[4] P. Sulem,et al. Transverse collapse of low-frequency Alfvén waves , 2001 .
[5] Catherine Sulem,et al. The nonlinear Schrödinger equation , 2012 .
[6] Akira Nakamura,et al. Multi-Soliton Solutions of a Derivative Nonlinear Schrödinger Equation , 1980 .
[7] S. Champeaux,et al. Alfvén-wave filamentation , 1997, Journal of Plasma Physics.
[8] J. Logan. Invariant Variational Principles , 1977 .
[9] Aly R. Seadawy,et al. Variational method for the nonlinear dynamics of an elliptic magnetic stagnation line , 2006 .
[10] T. Passot,et al. Long-Alfvén-wave trains in collisionless plasmas. II. A Landau-fluid approach , 2003 .
[11] T. Passot,et al. Filamentation instability of long Alfvén waves in warm collisionless plasmas , 2003 .