New pathways for bacterial polythioesters.

[1]  R. Daniel,et al.  Genome-guided insights into the versatile metabolic capabilities of the mercaptosuccinate-utilizing β-proteobacterium Variovorax paradoxus strain B4. , 2014, Environmental microbiology.

[2]  J. Rose,et al.  Identification of 3-Sulfinopropionyl Coenzyme A (CoA) Desulfinases within the Acyl-CoA Dehydrogenase Superfamily , 2013, Journal of bacteriology.

[3]  A. Steinbüchel,et al.  Novel Characteristics of Succinate Coenzyme A (Succinate-CoA) Ligases: Conversion of Malate to Malyl-CoA and CoA-Thioester Formation of Succinate Analogues In Vitro , 2013, Applied and Environmental Microbiology.

[4]  A. Steinbüchel,et al.  Succinyl-CoA:3-Sulfinopropionate CoA-Transferase from Variovorax paradoxus Strain TBEA6, a Novel Member of the Class III Coenzyme A (CoA)-Transferase Family , 2013, Journal of bacteriology.

[5]  A. Deters,et al.  A Novel 3-Sulfinopropionyl Coenzyme A (3SP-CoA) Desulfinase from Advenella mimigardefordensis Strain DPN7T Acting as a Key Enzyme during Catabolism of 3,3′-Dithiodipropionic Acid Is a Member of the Acyl-CoA Dehydrogenase Superfamily , 2013, Journal of bacteriology.

[6]  J. Vandenbergh,et al.  Synthesis of (Bio)‐Degradable Poly(β‐thioester)s via Amine Catalyzed Thiol−Ene Click Polymerization , 2012 .

[7]  A. Steinbüchel,et al.  Metabolic characteristics of the species Variovorax paradoxus , 2012, Applied Microbiology and Biotechnology.

[8]  A. Steinbüchel,et al.  Employing a Recombinant Strain of Advenella mimigardefordensis for Biotechnical Production of Homopolythioesters from 3,3′-Dithiodipropionic Acid , 2012, Applied and Environmental Microbiology.

[9]  A. Steinbüchel,et al.  Novel Reaction of Succinyl Coenzyme A (Succinyl-CoA) Synthetase: Activation of 3-Sulfinopropionate to 3-Sulfinopropionyl-CoA in Advenella mimigardefordensis Strain DPN7T during Degradation of 3,3′-Dithiodipropionic Acid , 2011, Journal of bacteriology.

[10]  Makoto Kato,et al.  Enzymatic Synthesis and Chemical Recycling of Polythiocaprolactone , 2011 .

[11]  A. Steinbüchel,et al.  Aerobic Degradation of Mercaptosuccinate by the Gram-Negative Bacterium Variovorax paradoxus Strain B4 , 2010, Journal of bacteriology.

[12]  Mechthild Bömeke,et al.  Investigations on the microbial catabolism of the organic sulfur compounds TDP and DTDP in Ralstonia eutropha H16 employing DNA microarrays , 2010, Applied Microbiology and Biotechnology.

[13]  A. Steinbüchel,et al.  Dihydrolipoamide Dehydrogenases of Advenella mimigardefordensis and Ralstonia eutropha Catalyze Cleavage of 3,3′-Dithiodipropionic Acid into 3-Mercaptopropionic Acid , 2010, Applied and Environmental Microbiology.

[14]  A. Steinbüchel,et al.  Impact of Multiple β-Ketothiolase Deletion Mutations in Ralstonia eutropha H16 on the Composition of 3-Mercaptopropionic Acid-Containing Copolymers , 2010, Applied and Environmental Microbiology.

[15]  Tomoya Higashihara,et al.  Synthesis of sulfur-containing poly(thioester)s with high refractive indices and high Abbe numbers , 2010 .

[16]  A. Steinbüchel,et al.  Biodegradation of the xenobiotic organic disulphide 4,4'-dithiodibutyric acid by Rhodococcus erythropolis strain MI2 and comparison with the microbial utilization of 3,3'-dithiodipropionic acid and 3,3'-thiodipropionic acid. , 2010, Microbiology.

[17]  Shiro Kobayashi,et al.  Lipase-catalyzed polyester synthesis – A green polymer chemistry , 2010, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[18]  Easan Sivaniah,et al.  In vitro production of polyhydroxyalkanoates: achievements and applications , 2009 .

[19]  John M. Beierle,et al.  Dynamic polythioesters via ring-opening polymerization of 1,4-thiazine-2,5-diones. , 2009, Organic & biomolecular chemistry.

[20]  B. Mooney,et al.  The second green revolution? Production of plant-based biodegradable plastics. , 2009, The Biochemical journal.

[21]  A. Steinbüchel,et al.  3-Mercaptopropionate Dioxygenase, a Cysteine Dioxygenase Homologue, Catalyzes the Initial Step of 3-Mercaptopropionate Catabolism in the 3,3-Thiodipropionic Acid-degrading Bacterium Variovorax paradoxus* , 2009, Journal of Biological Chemistry.

[22]  A. Steinbüchel,et al.  Ralstonia eutropha Strain H16 as Model Organism for PHA Metabolism and for Biotechnological Production of Technically Interesting Biopolymers , 2008, Journal of Molecular Microbiology and Biotechnology.

[23]  A. Steinbüchel,et al.  Novel Pathway for Catabolism of the Organic Sulfur Compound 3,3′-Dithiodipropionic Acid via 3-Mercaptopropionic Acid and 3-Sulfinopropionic Acid to Propionyl-Coenzyme A by the Aerobic Bacterium Tetrathiobacter mimigardefordensis Strain DPN7 , 2008, Applied and Environmental Microbiology.

[24]  Makoto Kato,et al.  Enzymatic synthesis of polythioester by the ring-opening polymerization of cyclic thioester. , 2007, Biomacromolecules.

[25]  Jeremy R. Thompson,et al.  Analysis of the in vitro biocatalytic production of poly -(β) -hydroxybutyric acid , 2007 .

[26]  C. Williams,et al.  Bacterial synthesis of biodegradable polyhydroxyalkanoates , 2007, Journal of applied microbiology.

[27]  H. Kricheldorf,et al.  Poly(thioester)s , 2007 .

[28]  T. Endo,et al.  Biosynthesis and biodegradability of copolythioesters from 3,3'-thiodipropionic acid and plant oils by Cupriviadus necator. , 2007, Macromolecular bioscience.

[29]  P. Vandamme,et al.  Tetrathiobacter mimigardefordensis sp. nov., isolated from compost, a betaproteobacterium capable of utilizing the organic disulfide 3,3'-dithiodipropionic acid. , 2006, International journal of systematic and evolutionary microbiology.

[30]  Makoto Kato,et al.  Enzyme-Catalyzed Preparation of Aliphatic Polythioester by Direct Polycondensation of Diacid Diester and Dithiol , 2006 .

[31]  N. Weber,et al.  Copolymeric polythioesters by lipase-catalyzed thioesterification and transthioesterification of α,ω-alkanedithiols , 2006, Applied Microbiology and Biotechnology.

[32]  Alexander Steinbüchel,et al.  Non-biodegradable biopolymers from renewable resources: perspectives and impacts. , 2005, Current opinion in biotechnology.

[33]  Makoto Kato,et al.  Preparation of aliphatic poly(thioester) by the lipase-catalyzed direct polycondensation of 11-mercaptoundecanoic acid. , 2005, Biomacromolecules.

[34]  A. Steinbüchel,et al.  Application of the BPEC Pathway for Large-Scale Biotechnological Production of Poly(3-Mercaptopropionate) by Recombinant Escherichia coli, Including a Novel In Situ Isolation Method , 2005, Applied and Environmental Microbiology.

[35]  A. Steinbüchel,et al.  Poly(3-mercaptopropionate): a nonbiodegradable biopolymer? , 2005, Biomacromolecules.

[36]  R. Marchessault,et al.  Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. , 2005, Biomacromolecules.

[37]  Simone Reinhardt,et al.  The “Intracellular” Poly(3-Hydroxybutyrate) (PHB) Depolymerase of Rhodospirillum rubrum Is a Periplasm-Located Protein with Specificity for Native PHB and with Structural Similarity to Extracellular PHB Depolymerases , 2004, Journal of bacteriology.

[38]  T. Lütke-Eversloh,et al.  Studies on the biodegradability of polythioester copolymers and homopolymers by polyhydroxyalkanoate (PHA)-degrading bacteria and PHA depolymerases , 2004, Archives of Microbiology.

[39]  B. Rehm Polyester synthases: natural catalysts for plastics. , 2003, The Biochemical journal.

[40]  A. Steinbüchel,et al.  Physical properties of microbial polythioesters: characterization of poly(3-mercaptoalkanoates) synthesized by engineered Escherichia coli. , 2003, Biomacromolecules.

[41]  T. Lütke-Eversloh,et al.  Schlegelella thermodepolymerans gen. nov., sp. nov., a novel thermophilic bacterium that degrades poly(3-hydroxybutyrate-co-3-mercaptopropionate). , 2003, International journal of systematic and evolutionary microbiology.

[42]  S. Iwata,et al.  Enzyme-catalyzed preparation of aliphatic polyesters containing thioester linkages , 2003 .

[43]  A. Steinbüchel,et al.  Novel precursor substrates for polythioesters (PTE) and limits of PTE biosynthesis in Ralstonia eutropha. , 2003, FEMS microbiology letters.

[44]  Hellmut Eckert,et al.  Biosynthesis of novel thermoplastic polythioesters by engineered Escherichia coli , 2002, Nature materials.

[45]  T. Lütke-Eversloh,et al.  Identification of novel sulfur-containing bacterial polyesters: biosynthesis of poly(3-hydroxy-S-propyl-omega-thioalkanoates) containing thioether linkages in the side chains. , 2002, Microbiology.

[46]  A. Steinbüchel,et al.  Characterization of microbial polythioesters: physical properties of novel copolymers synthesized by Ralstonia eutropha. , 2002, Biomacromolecules.

[47]  D. Jendrossek,et al.  Microbial degradation of polyhydroxyalkanoates. , 2002, Annual review of microbiology.

[48]  A. Steinbüchel,et al.  Biosynthesis of poly(3-hydroxybutyrate-co-3-mercaptobutyrate) as a sulfur analogue to poly(3-hydroxybutyrate) (PHB). , 2001, Biomacromolecules.

[49]  A. Steinbüchel,et al.  Identification of a new class of biopolymer: bacterial synthesis of a sulfur-containing polymer with thioester linkages. , 2001, Microbiology.

[50]  A. Steinbüchel,et al.  Analysis of the Thiocapsa pfennigii polyhydroxyalkanoate synthase: subcloning, molecular characterization and generation of hybrid synthases with the corresponding Chromatium vinosum enzyme , 2000, Applied Microbiology and Biotechnology.

[51]  A. Steinbüchel,et al.  A Novel Genetically Engineered Pathway for Synthesis of Poly(Hydroxyalkanoic Acids) in Escherichia coli , 2000, Applied and Environmental Microbiology.

[52]  E. Papoutsakis,et al.  Cloning and expression of Clostridium acetobutylicum phosphotransbutyrylase and butyrate kinase genes in Escherichia coli , 1988, Journal of bacteriology.