Classification approach for reliability-based topology optimization using probabilistic neural networks

This research explores the usage of classification approaches in order to facilitate the accurate estimation of probabilistic constraints in optimization problems under uncertainty. The efficiency of the proposed framework is achieved with the combination of a conventional topology optimization method and a classification approach- namely, probabilistic neural networks (PNN). Specifically, the implemented framework using PNN is useful in the case of highly nonlinear or disjoint failure domain problems. The effectiveness of the proposed framework is demonstrated with three examples. The first example deals with the estimation of the limit state function in the case of disjoint failure domains. The second example shows the efficacy of the proposed method in the design of stiffest structure through the topology optimization process with the consideration of random field inputs and disjoint failure phenomenon, such as buckling. The third example demonstrates the applicability of the proposed method in a practical engineering problem.

[1]  A. Michell LVIII. The limits of economy of material in frame-structures , 1904 .

[2]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[3]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[4]  T. Cacoullos Estimation of a multivariate density , 1966 .

[5]  Donald F. Specht,et al.  Generation of Polynomial Discriminant Functions for Pattern Recognition , 1967, IEEE Trans. Electron. Comput..

[6]  King-Sun Fu,et al.  On the generalized Karhunen-Loeve expansion (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[7]  G. Sved,et al.  Structural optimization under multiple loading , 1968 .

[8]  Lewis P. Felton,et al.  Optimization of Truss Geometry , 1969 .

[9]  Keinosuke Fukunaga,et al.  Application of the Karhunen-Loève Expansion to Feature Selection and Ordering , 1970, IEEE Trans. Computers.

[10]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[11]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[12]  Robert J. Marks,et al.  Performance Comparisons Between Backpropagation Networks and Classification Trees on Three Real-World Applications , 1989, NIPS.

[13]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[14]  U. Kirsch,et al.  On singular topologies in optimum structural design , 1990 .

[15]  Donald F. Specht,et al.  Probabilistic neural networks , 1990, Neural Networks.

[16]  Richard Lippmann,et al.  Neural Network Classifiers Estimate Bayesian a posteriori Probabilities , 1991, Neural Computation.

[17]  Kurt Hornik,et al.  Approximation capabilities of multilayer feedforward networks , 1991, Neural Networks.

[18]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1992, Math. Control. Signals Syst..

[19]  Kwok-Leung Tsui,et al.  AN OVERVIEW OF TAGUCHI METHOD AND NEWLY DEVELOPED STATISTICAL METHODS FOR ROBUST DESIGN , 1992 .

[20]  Michael Y. Hu,et al.  Two-Group Classification Using Neural Networks* , 1993 .

[21]  Donald E. Brown,et al.  A comparison of decision tree classifiers with backpropagation neural networks for multimodal classification problems , 1992, Pattern Recognit..

[22]  John Mingers,et al.  Neural Networks, Decision Tree Induction and Discriminant Analysis: an Empirical Comparison , 1994 .

[23]  David J. Spiegelhalter,et al.  Machine Learning, Neural and Statistical Classification , 2009 .

[24]  O. Sigmund Tailoring materials with prescribed elastic properties , 1995 .

[25]  George I. N. Rozvany,et al.  Layout Optimization of Structures , 1995 .

[26]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[27]  M. Zhou,et al.  Difficulties in truss topology optimization with stress and local buckling constraints , 1996 .

[28]  Mary Frecker,et al.  Topological synthesis of compliant mechanisms using multi-criteria optimization , 1997 .

[29]  Dominique Bertrand,et al.  Comparison of multilayer perceptron and probabilistic neural networks in artificial vision. Application to the discrimination of seeds , 1997 .

[30]  Sun-Yuan Kung,et al.  Quantification and segmentation of brain tissues from MR images: a probabilistic neural network approach , 1998, IEEE Trans. Image Process..

[31]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[32]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[33]  Guoqiang Peter Zhang,et al.  Neural networks for classification: a survey , 2000, IEEE Trans. Syst. Man Cybern. Part C.

[34]  Ian Witten,et al.  Data Mining , 2000 .

[35]  Farrokh Mistree,et al.  Design of multifunctional honeycomb materials , 2002 .

[36]  Dan M. Frangopol,et al.  Reliability-based design of MEMS mechanisms by topology optimization , 2003 .

[37]  Jorge E. Hurtado,et al.  Classification Approach for Reliability Analysis with Stochastic Finite-Element Modeling , 2003 .

[38]  N. Olhoff,et al.  Reliability-based topology optimization , 2004 .

[39]  Michael Yu Wang,et al.  Design of multimaterial compliant mechanisms using level-set methods , 2005 .

[40]  Farrokh Mistree,et al.  Robust Design of Cellular Materials With Topological and Dimensional Imperfections , 2006 .

[41]  Antonio Harrison Sánchez,et al.  Limit state function identification using Support Vector Machines for discontinuous responses and disjoint failure domains , 2008 .

[42]  Nozomu Kogiso,et al.  Robust Topology Optimization for Compliant Mechanisms Considering Uncertainty of Applied Loads , 2008 .

[43]  Jiten Patel,et al.  Optimal Synthesis of Mesostructured Materials under Uncertainty , 2009 .

[44]  Martin Rumpf,et al.  Shape Optimization Under Uncertainty---A Stochastic Programming Perspective , 2008, SIAM J. Optim..

[45]  Sang-Hoon Lee,et al.  Level set based robust shape and topology optimization under random field uncertainties , 2010 .

[46]  M. Bendsøe,et al.  Topology Optimization: "Theory, Methods, And Applications" , 2011 .