Elastic anisotropy, thermal conductivity and tensile properties of MAX phase V2GaC, Nb2GaC and Ta2GaC: First-principles calculations

[1]  Yu Zhou,et al.  On the formation mechanisms and properties of MAX phases: A review , 2021, Journal of the European Ceramic Society.

[2]  M. Peng,et al.  Stability and electronic structures of the Ti Zn intermetallic compounds: A DFT calculation , 2019, Physica B: Condensed Matter.

[3]  K. Zhou,et al.  Density Functional Theory Study of Mn+1AXn Phases: A Review , 2019 .

[4]  Nusrat Jahan,et al.  First hafnium-based MAX phase in the 312 family, Hf3AlC2: A first-principles study , 2017 .

[5]  A. Bouhemadou,et al.  Phase stability, mechanical and thermodynamic properties of orthorhombic and trigonal MgSiN2: an ab initio study , 2016 .

[6]  M. A. Ali,et al.  Newly synthesized Zr2(Al0.58Bi0.42)C, Zr2(Al0.2Sn0.8)C, and Zr2(Al0.3Sb0.7)C MAX phases: A first-principles study , 2016, 1604.06317.

[7]  M. Peng,et al.  Electronic structures, mechanical and thermodynamic properties of cubic alkaline-earth hexaborides from first principles calculations , 2015 .

[8]  Ye-hua Jiang,et al.  Stability and elastic properties of Y–C binary compounds investigated by first principles calculations , 2014 .

[9]  Manmen Liu,et al.  First-Principle Study of Electronic Structure and Stability of Ru1-xPdxZr , 2013 .

[10]  Zhong Wan,et al.  An Extended Spectral Conjugate Gradient Method for Unconstrained Optimization Problems , 2013 .

[11]  Bo Xu,et al.  Microscopic theory of hardness and design of novel superhard crystals , 2012 .

[12]  M. Barsoum,et al.  MAX phase carbides and nitrides: Properties for future nuclear power plant in-core applications and neutron transmutation analysis , 2012 .

[13]  S. Yamanaka,et al.  Thermal conductivity of BaPuO3 at temperatures from 300 to 1500 K , 2011 .

[14]  Michel W. Barsoum,et al.  Elastic and Mechanical Properties of the MAX Phases , 2011 .

[15]  I. Shein,et al.  Structural, elastic, electronic properties and Fermi surface for superconducting Mo2GaC in comparison with V2GaC and Nb2GaC from first principles , 2010 .

[16]  Zi-kui Liu,et al.  Structural and elastic properties of cubic and hexagonal TiN and AlN from first-principles calculations , 2010 .

[17]  D R McKenzie,et al.  A comprehensive survey of M2AX phase elastic properties , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[18]  Jiecai Han,et al.  Electronic structure, elasticity and hardness of diborides of zirconium and hafnium: First principles calculations , 2008 .

[19]  David R. Clarke,et al.  Anisotropic thermal conductivity of the Aurivillus phase, bismuth titanate (Bi4Ti3O12): A natural nanostructured superlattice , 2008 .

[20]  Martin Ostoja-Starzewski,et al.  Universal elastic anisotropy index. , 2008, Physical review letters.

[21]  M. Barsoum,et al.  Towards the synthesis of MAX-phase functional coatings by pulsed laser deposition , 2007 .

[22]  A. Bouhemadou,et al.  Prediction study of structural and elastic properties under the pressure effect of M2GaC (M=Ti,V,Nb,Ta) , 2007 .

[23]  Carlos G. Levi,et al.  MATERIALS DESIGN FOR THE NEXT GENERATION THERMAL BARRIER COATINGS , 2003 .

[24]  Matt Probert,et al.  First-principles simulation: ideas, illustrations and the CASTEP code , 2002 .

[25]  Olle Eriksson,et al.  Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2 , 1998 .

[26]  J. Crain,et al.  Elastic instabilities in crystals from ab initio stress - strain relations , 1997 .

[27]  Wang,et al.  Generalized gradient approximation for the exchange-correlation hole of a many-electron system. , 1996, Physical review. B, Condensed matter.

[28]  Heine,et al.  Optimized and transferable nonlocal separable ab initio pseudopotentials. , 1993, Physical review. B, Condensed matter.

[29]  Watson,et al.  Lower limit to the thermal conductivity of disordered crystals. , 1992, Physical review. B, Condensed matter.

[30]  H. Ledbetter,et al.  Elastic properties of zinc: A compilation and a review , 1977 .

[31]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[32]  H. Nowotny,et al.  Die H-Phasen Ti2TlC, Ti2PbC, Nb2InC, Nb2SnC und Ta2GaC , 1964 .

[33]  O. Anderson,et al.  A simplified method for calculating the debye temperature from elastic constants , 1963 .

[34]  A. Maradudin,et al.  An Introduction To Applied Anisotropic Elasticity , 1961 .

[35]  J. Callaway Model for Lattice Thermal Conductivity at Low Temperatures , 1959 .

[36]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[37]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[38]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[39]  D. Karimov,et al.  PHYSICAL PROPERTIES OF CRYSTALS , 2014 .

[40]  M. Barsoum,et al.  MAX phases : Bridging the gap between metals and ceramics MAX phases : Bridging the gap between metals and ceramics , 2013 .

[41]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[42]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[43]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .