Analytical modeling of a silicon-polymer electrothermal microactuator

This paper illustrates both thermal and mechanical analysis methods for displacement and contact force calculating of a novel sensing silicon-polymer microgripper when heat sources are applied by an electric current via its actuators. Thermal analysis is used to obtain temperature profile by figuring out a heat conductions and convections model. Temperature profile is then applied into the mechanical structure of the gripper’s actuators to form the final equation of displacement and contact force of the jaws. Finally, the comparison among the calculation, simulation and actual measurement concludes that materialization methods are appropriate. Achieving the final equation of gripper’s jaws displacement and contact force is a major step to optimize or reform this novel structure for different sizes to meet specific applications.

[1]  Pasqualina M. Sarro,et al.  Polymer constraint effect for electrothermal bimorph microactuators , 2007 .

[2]  Paolo Dario,et al.  Micromechatronics in surgery , 2003 .

[3]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[4]  Zhaopeng Chen,et al.  A multipurpose electrothermal microgripper for biological micro-manipulation , 2013 .

[5]  Liguo Chen,et al.  Design of hybrid-type MEMS microgripper , 2009, 2009 International Conference on Mechatronics and Automation.

[6]  Roel Snieder,et al.  A Guided Tour of Mathematical Physics , 1994 .

[7]  N. Chronis,et al.  Electrothermally activated SU-8 microgripper for single cell manipulation in solution , 2005, Journal of Microelectromechanical Systems.

[8]  Christian Rembe,et al.  Optical measurement methods to study dynamic behavior in MEMS , 2001, Lasers in Metrology and Art Conservation.

[9]  Dae-Gab Gweon,et al.  Modelling and optimum design of a fine actuator for optical heads , 1997 .

[10]  B. Nelson,et al.  Monolithically Fabricated Microgripper With Integrated Force Sensor for Manipulating Microobjects and Biological Cells Aligned in an Ultrasonic Field , 2007, Journal of Microelectromechanical Systems.

[11]  N. G. Stephen,et al.  Discussion: “Shear Coefficients for Timoshenko Beam Theory” (Hutchinson, J. R., 2001, ASME J. Appl. Mech., 68, pp. 87–92) , 2001 .

[12]  J. F. Creemer,et al.  Piezoresistive Cantilever Beam for Force Sensingin Two Dimensions , 2007, IEEE Sensors Journal.

[13]  Stephanus Büttgenbach,et al.  Novel micro-pneumatic actuator for MEMS , 2002 .

[14]  R.W. Dutton,et al.  Electrostatic micromechanical actuator with extended range of travel , 2000, Journal of Microelectromechanical Systems.

[15]  Ulrich Hilleringmann,et al.  Electro-thermo-mechanical analytical modeling of multilayer cantilever microactuator , 2007 .

[16]  Chin-Hsiang Cheng,et al.  Modeling, fabrication and performance test of an electro-thermal microactuator , 2008 .

[17]  H. Wyld,et al.  Mathematical Methods for Physics , 1976 .

[18]  Gih-Keong Lau,et al.  Electrothermal Microgripper With Large Jaw Displacement and Integrated Force Sensors , 2008, Journal of Microelectromechanical Systems.

[19]  Gih-Keong Lau,et al.  Polymeric Thermal Microactuator With Embedded Silicon Skeleton: Part II—Fabrication, Characterization, and Application for 2-DOF Microgripper , 2008, Journal of Microelectromechanical Systems.

[20]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[21]  Wensyang Hsu,et al.  Design and Analysis of an Electro-Thermally Driven Long-Stretch Micro Drive With Cascaded Structure , 2002 .

[22]  Arianna Menciassi,et al.  Force sensing microinstrument for measuring tissue properties and pulse in microsurgery , 2003 .

[23]  P. Sarro,et al.  2D electro-thermal microgrippers with large clamping and rotation motion at low driving voltage , 2007, 2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS).

[24]  J. F. Creemer,et al.  Electrothermal microgripper with large jaw displacement and integrated force sensors , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.