Artificially stacked of two-dimensional atomic layers : towards new van der Waals solids

van der Waals solids Guanhui Gao1,2,II, Wei Gao, E. Cannuccia4,II, Jaime Taha-Tijerina, Luis Balicas, Akshay Mathkar, T.N. Narayanan, Zhen Liu, Bipin K. Gupta, Juan Peng, Yansheng Yin*, Angel Rubio *, Pulickel M. Ajayan * Department of Mechanical Engineering & Materials Science, Rice University, Houston, Texas 77005, United States Institute of Materials Science and Engineering, Ocean University of China, Qingdao, China 3 Department of Chemistry Rice University, Houston, Texas 77005, United States 4 Nano-Bio Spectroscopy Group and ETSF Scientific Development Centre, Departamento de Física de Materiales, CFM-CSIC-UPV/EHU-MPC and DIPC, University of the Basque Country UPV/EHU, Av. Tolosa 72, E-20018 San Sebastián, Spain 5 National High Magnetic Field Lab, Florida State University, USA 6 Dr. K S Krishnan Road, New Delhi-110012, India 7 School of Chemistry and Chemical Engineering Nanjing University, China IIThese authors contributed equally to this work. Abstract

[1]  P. Khomyakov,et al.  Electrostatic doping of graphene through ultrathin hexagonal boron nitride films. , 2011, Nano letters.

[2]  Tony F. Heinz,et al.  Observation of an electrically tunable band gap in trilayer graphene , 2011, 1105.4658.

[3]  Yang Wang,et al.  Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy. , 2011, Nano letters.

[4]  S. Ciraci,et al.  Two-dimensional C / BN core / shell structures , 2011, 1408.0396.

[5]  Jun Lou,et al.  Direct growth of graphene/hexagonal boron nitride stacked layers. , 2011, Nano letters.

[6]  Pablo Jarillo-Herrero,et al.  Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. , 2011, Nature materials.

[7]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[8]  Tiffany V. Williams,et al.  Aqueous Dispersions of Few-Layered and Monolayered Hexagonal Boron Nitride Nanosheets from Sonication-Assisted Hydrolysis: Critical Role of Water , 2011 .

[9]  Zheng Yan,et al.  Growth of graphene from solid carbon sources , 2010, Nature.

[10]  A. Krasheninnikov,et al.  Electron knock-on damage in hexagonal boron nitride monolayers , 2010 .

[11]  Jun Lou,et al.  Large scale growth and characterization of atomic hexagonal boron nitride layers. , 2010, Nano letters.

[12]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[13]  P. Ajayan,et al.  Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films , 2010 .

[14]  Deep Jariwala,et al.  Atomic layers of hybridized boron nitride and graphene domains. , 2010, Nature materials.

[15]  Alicja Bachmatiuk,et al.  Atomic resolution imaging and topography of boron nitride sheets produced by chemical exfoliation. , 2010, ACS nano.

[16]  C N R Rao,et al.  Graphene analogues of BN: novel synthesis and properties. , 2010, ACS nano.

[17]  M. Côté,et al.  Ab initio high-energy excitonic effects in graphite and graphene , 2009, 0909.1682.

[18]  Christian Kisielowski,et al.  Atomically thin hexagonal boron nitride probed by ultrahigh-resolution transmission electron microscopy , 2009 .

[19]  C. Zhi,et al.  Large‐Scale Fabrication of Boron Nitride Nanosheets and Their Utilization in Polymeric Composites with Improved Thermal and Mechanical Properties , 2009 .

[20]  Jannik C. Meyer,et al.  Selective sputtering and atomic resolution imaging of atomically thin boron nitride membranes. , 2009, Nano letters.

[21]  C. Jin,et al.  Fabrication of a freestanding boron nitride single layer and its defect assignments. , 2009, Physical review letters.

[22]  Steven G. Louie,et al.  Graphene at the Edge: Stability and Dynamics , 2009, Science.

[23]  Kenji Watanabe,et al.  Structure of chemically derived mono- and few-atomic-layer boron nitride sheets , 2008 .

[24]  Y. Yoshida,et al.  Strain induced anomalous red shift in mesoscopic iron oxide prepared by a novel technique , 2008 .

[25]  M F Crommie,et al.  Direct imaging of lattice atoms and topological defects in graphene membranes. , 2008, Nano letters.

[26]  Jannik C. Meyer,et al.  The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes , 2008 .

[27]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO2. , 2007, Nature nanotechnology.

[28]  S. Xiao,et al.  Intrinsic and extrinsic performance limits of graphene devices on SiO 2 , 2008 .

[29]  C. M. D. de Castilho,et al.  A theoretical investigation of defects in a boron nitride monolayer , 2007, Nanotechnology.

[30]  R. Arenal,et al.  High-angular-resolution electron energy loss spectroscopy of hexagonal boron nitride , 2007 .

[31]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[32]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[33]  L. Wirtz,et al.  Excitons in boron nitride nanotubes: dimensionality effects. , 2005, Physical review letters.

[34]  Takashi Taniguchi,et al.  Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal , 2004, Nature materials.

[35]  L. Wirtz,et al.  Ab initio calculations of the lattice dynamics of boron nitride nanotubes , 2003 .

[36]  J. Albella,et al.  BCN films with controlled composition obtained by the interaction between molecular beams of B and C with nitrogen ion beams , 2003 .

[37]  Miyamoto,et al.  Electronic properties of tubule forms of hexagonal BC3. , 1994, Physical review. B, Condensed matter.