GRAPHICAL REPRESENTATIONS AND CLUSTER ALGORITHMS II

We continue the study, initiated in Part I, of graphical representations and cluster algorithms for various models in (or related to) statistical mechanics. For certain models, e.g. the Blume–Emery–Griffths model and various generalizations, we develop Fortuin Kasteleyn-type representations which lead immediately to Swendsen Wang-type algorithms. For other models, e.g. the random cluster model, that are defined by a graphical representation, we develop cluster algorithms without reference to an underlying spin system. In all cases, phase transitions are related to percolation (or incipient percolation) in the graphical representation which, via the IC algorithm, allows for the rapid simulation of these systems at the transition point. Pertinent examples include the (continuum) Widom–Rowlinson model, the restricted 1-step solid-on-solid model and the XY model.

[1]  J. Given,et al.  The kirkwood-salsburg equations for random continuum percolation , 1990 .

[2]  E. Domany,et al.  Phase diagram of the Z(5) model on a square lattice , 1980 .

[3]  LETTER TO THE EDITOR: The isotropic O(3) model and the Wolff representation , 1998 .

[4]  J. Chayes,et al.  The correct extension of the Fortuin-Kasteleyn result to plaquette percolation , 1984 .

[5]  F. Y. Wu CORRIGENDUM: Dilute Potts model, duality and site-bond percolation , 1981 .

[6]  M. Aizenman On the slow decay ofO(2) correlations in the absence of topological excitations: Remark on the Patrascioiu-Seiler model , 1994 .

[7]  S. Shlosman,et al.  Aggregation and intermediate phases in dilute spin systems , 1995 .

[8]  G. Grimmett,et al.  The random-cluster model on the complete graph , 1996 .

[9]  L. Chayes Discontinuity of the Spin-Wave Stiffness in the Two-Dimensional XY Model , 1998 .

[10]  Jonathan Machta,et al.  Graphical representations and cluster algorithms I. Discrete spin systems , 1997 .

[11]  A generalization of Poisson convergence to Gibbs convergence with applications to statistical mechanics , 1994 .

[12]  W. Klein Potts-model formulation of continuum percolation , 1982 .

[13]  Cluster method for the Ashkin-Teller model. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Chayes,et al.  Invaded cluster algorithm for Potts models. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  V. J. Emery,et al.  Ising Model for the ? Transition and Phase Separation in He^{3}-He^{4} Mixtures , 1971 .

[16]  Wang,et al.  Antiferromagnetic Potts models. , 1989, Physical review letters.

[17]  A. Patrascioiu,et al.  Phase structure of two-dimensional spin models and percolation , 1992 .

[18]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[19]  Olle Häggström,et al.  Characterization results and Markov chain Monte Carlo algorithms including exact simulation for some spatial point processes , 1999 .

[20]  J. Chayes,et al.  Discontinuity of the magnetization in one-dimensional 1/¦x−y¦2 Ising and Potts models , 1988 .

[21]  G. Giacomin,et al.  Agreement percolation and phase coexistence in some Gibbs systems , 1995 .

[22]  Random-cluster representation of the ashkin-teller model , 1997, cond-mat/9704017.

[23]  M. Aizenman,et al.  Discontinuity of the percolation density in one dimensional 1/|x−y|2 percolation models , 1986 .

[24]  Chayes,et al.  Invaded cluster algorithm for equilibrium critical points. , 1995, Physical review letters.

[25]  J. Lebowitz,et al.  Inequalities for higher order Ising spins and for continuum fluids , 1972 .

[26]  John S. Rowlinson,et al.  New Model for the Study of Liquid–Vapor Phase Transitions , 1970 .

[27]  Chayes,et al.  Intermediate phase for a classical continuum model. , 1996, Physical review. B, Condensed matter.

[28]  Olle Häggström,et al.  Phase transition in continuum Potts models , 1996 .

[29]  Newman,et al.  Wetting in a three-dimensional system: An exact solution. , 1988, Physical review letters.

[30]  Hasenbusch,et al.  Cluster algorithm for a solid-on-solid model with constraints. , 1992, Physical review. B, Condensed matter.

[31]  K. Alexander,et al.  Non-Perturbative Criteria for Gibbsian Uniqueness , 1997 .

[32]  H. Gould,et al.  Monte Carlo Study of the Widom-Rowlinson Fluid Using Cluster Methods , 1997, cond-mat/9704163.

[33]  Jennifer Chayes,et al.  The analysis of the Widom-Rowlinson model by stochastic geometric methods , 1995 .

[34]  Stochastic cluster algorithms for discrete gaussian (SOS) models , 1991 .

[35]  Wolff,et al.  Collective Monte Carlo updating for spin systems. , 1989, Physical review letters.

[36]  G. Grimmett Potts models and random-cluster processes with many-body interactions , 1994 .

[37]  A. D. Sokal,et al.  Dynamic critical behavior of a Swendsen-Wang-Type algorithm for the Ashkin-Teller model , 1996 .

[38]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[39]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[40]  Wang,et al.  Three-state antiferromagnetic Potts models: A Monte Carlo study. , 1990, Physical review. B, Condensed matter.

[41]  Kandel,et al.  General cluster Monte Carlo dynamics. , 1991, Physical review. B, Condensed matter.

[42]  V. Rivasseau Lieb's correlation inequality for plane rotors , 1980 .