Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentinel-5 and its precursor

Abstract. Sentinel-5 (S5) and its precursor (S5P) are future European satellite missions aiming at global monitoring of methane (CH4) column-average dry air mole fractions (XCH4). The spectrometers to be deployed onboard the satellites record spectra of sunlight backscattered from the Earth's surface and atmosphere. In particular, they exploit CH4 absorption in the shortwave infrared spectral range around 1.65 μm (S5 only) and 2.35 μm (both S5 and S5P) wavelength. Given an accuracy goal of better than 2 % for XCH4 to be delivered on regional scales, assessment and reduction of potential sources of systematic error such as spectroscopic uncertainties is crucial. Here, we investigate how spectroscopic errors propagate into retrieval errors on the global scale. To this end, absorption spectra of a ground-based Fourier transform spectrometer (FTS) operating at very high spectral resolution serve as estimate for the quality of the spectroscopic parameters. Feeding the FTS fitting residuals as a perturbation into a global ensemble of simulated S5- and S5P-like spectra at relatively low spectral resolution, XCH4 retrieval errors exceed 0.6 % in large parts of the world and show systematic correlations on regional scales, calling for improved spectroscopic parameters.

[1]  Tatsuya Yokota,et al.  PPDF‐based method to account for atmospheric light scattering in observations of carbon dioxide from space , 2008 .

[2]  C. Frankenberg,et al.  The 2ν_3 band of CH_4 revisited with line mixing: Consequences for spectroscopy and atmospheric retrievals at 1.67 μm , 2010 .

[3]  A. Nikitin,et al.  Accurate spectroscopic models for methane polyads derived from a potential energy surface using high-order contact transformations. , 2013, The journal of physical chemistry. A.

[4]  O. Boucher,et al.  The aerosol-climate model ECHAM5-HAM , 2004 .

[5]  Akihiko Kuze,et al.  Toward accurate CO_2 and CH_4 observations from GOSAT , 2011 .

[6]  Masakatsu Nakajima,et al.  Thermal and near infrared sensor for carbon observation Fourier-transform spectrometer on the Greenhouse Gases Observing Satellite for greenhouse gases monitoring. , 2009, Applied optics.

[7]  François-Marie Bréon,et al.  Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework , 2007 .

[8]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[9]  Frank Hase,et al.  XCO 2 -measurements with a tabletop FTS using solar absorption spectroscopy , 2012 .

[10]  J. F. Meirink,et al.  Inverse Modeling of Global and Regional CH4 Emissions Using SCIAMACHY Satellite Retrievals , 2009 .

[11]  Ilse Aben,et al.  CH4 retrievals from space‐based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes , 2010 .

[12]  Henk Eskes,et al.  TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications , 2012 .

[13]  A. Engel,et al.  Temperature dependences of air-broadening, air-narrowing and line-mixing coefficients of the methane ν3 R(6) manifold lines—Application to in-situ measurements of atmospheric methane , 2014 .

[14]  J. Randerson,et al.  An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker , 2007, Proceedings of the National Academy of Sciences.

[15]  Michael Buchwitz,et al.  A method for improved SCIAMACHY CO 2 retrieval in the presence of optically thin clouds , 2009 .

[16]  Peter Bergamaschi,et al.  Three decades of global methane sources and sinks , 2013 .

[17]  L. R. Brown,et al.  HIGH RESOLUTION SPECTROSCOPY AND GLOBAL ANALYSIS OF THE TETRADECAD REGION OF METHANE ${}^{12}$CH$_4$ , 2011 .

[18]  Paul Ingmann,et al.  Requirements for the GMES Atmosphere Service and ESA's implementation concept: Sentinels-4/-5 and -5p , 2012 .

[19]  Rebecca Castano,et al.  Atmospheric validation of high accuracy CO2 absorption coefficients for the OCO-2 mission , 2012 .

[20]  I. Aben,et al.  Water vapour total columns from SCIAMACHY spectra in the 2.36 μm window , 2009 .

[21]  Ilse Aben,et al.  Pressure broadening in the 2ν 3 band of methane and its implication on atmospheric retrievals , 2008 .

[22]  V. M. Devi,et al.  Methane line parameters in the HITRAN2012 database , 2013 .

[23]  J. F. Meirink,et al.  Assessing Methane Emissions from Global Space-Borne Observations , 2005, Science.

[24]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[25]  Liang Feng,et al.  Spatial resolution of tropical terrestrial CO 2 fluxes inferred using space-borne column CO 2 sampled in different earth orbits: the role of spatial error correlations , 2011 .

[26]  Peter Bergamaschi,et al.  Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite - Part 2: Methane , 2008 .

[27]  Hartmut Boesch,et al.  Carbon Monitoring Satellite (CarbonSat): assessment of atmospheric CO 2 and CH 4 retrieval errors by error parameterization , 2013 .

[28]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[29]  Ilse Aben,et al.  Improved water vapour spectroscopy in the 4174-4300 cm-1 region and its impact on SCIAMACHY HDO/H2O measurements , 2012 .

[30]  Rebecca Castano,et al.  The ACOS CO 2 retrieval algorithm – Part 1: Description and validation against synthetic observations , 2011 .

[31]  Ilse Aben,et al.  TROPOMI aboard Sentinel-5 Precursor: Prospective performance of CH4 retrievals for aerosol and cirrus loaded atmospheres , 2012 .

[32]  V. Boudon,et al.  High resolution spectroscopy and the first global analysis of the Tetradecad region of methane 12CH4. , 2013, Physical chemistry chemical physics : PCCP.

[33]  S. Houweling,et al.  Global CO 2 fluxes estimated from GOSAT retrievals of total column CO 2 , 2013 .

[34]  C. Rinsland,et al.  Intercomparison of retrieval codes used for the analysis of high-resolution, ground-based FTIR measurements , 2004 .

[35]  S. Mikhailenko,et al.  GOSAT-2009 methane spectral line list in the 5550–6236 cm−1 range , 2010 .

[36]  Peter Bergamaschi,et al.  Satellite chartography of atmospheric methane from SCIAMACHY on board ENVISAT: 2. Evaluation based on inverse model simulations , 2007 .

[37]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[38]  O. Hasekamp,et al.  CH4, CO, and H2O spectroscopy for the Sentinel-5 Precursor mission: an assessment with the Total Carbon Column Observing Network measurements , 2012 .

[39]  R. Martin,et al.  Emissions estimation from satellite retrievals: A review of current capability , 2013 .

[40]  Peter Bergamaschi,et al.  Tropical methane emissions: A revised view from SCIAMACHY onboard ENVISAT , 2008 .

[41]  Tatsuya Yokota,et al.  Impact of aerosol and thin cirrus on retrieving and validating XCO2 from GOSAT shortwave infrared measurements , 2013 .

[42]  E. R. Polovtseva,et al.  The HITRAN2012 molecular spectroscopic database , 2013 .

[43]  Title Precision requirements for space-based X CO 2 data Permalink , 2007 .