A New Affine Invariant Curve Normalization Technique Using Independent Component Analysis

A new affine invariant curve normalization method using independent component analysis (ICA) is presented. First, principal component analysis (PCA) is used for translation, scale and shear normalization. ICA and the third order moments are then employed for rotation and reflection normalization. It is shown that all affine transformed versions of an object have a unique or canonical representation. Experiments are conducted to asses the robustness of our approach. Proposed normalization technique can be used as a pre-processing for object modeling and recognition

[1]  Xilin Yi,et al.  Robust occluding contour detection using the Hausdorff distance , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[2]  Chun-Shin Lin,et al.  New forms of shape invariants from elliptic fourier descriptors , 1987, Pattern Recognit..

[3]  Yannis Avrithis,et al.  Affine-invariant curve normalization for object shape representation, classification, and retrieval , 2001, Machine Vision and Applications.

[4]  Keinosuke Fukunaga,et al.  Introduction to statistical pattern recognition (2nd ed.) , 1990 .

[5]  Mustafa Unel,et al.  The Determination of Implicit Polynomial Canonical Curves , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Michael Werman,et al.  Similarity and Affine Invariant Distances Between 2D Point Sets , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  David J. Kriegman,et al.  Parameterized Families of Polynomials for Bounded Algebraic Curve and Surface Fitting , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Dinggang Shen,et al.  Generalized Affine Invariant Image Normalization , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Zhaohui Huang,et al.  Affine-invariant B-spline moments for curve matching , 1996, IEEE Trans. Image Process..

[10]  B. S. Manjunath,et al.  Affine-invariant curve matching , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[11]  Aapo Hyvrinen,et al.  Fast and Robust Fixed-Point Algorithms , 1999 .

[12]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[13]  Te-Won Lee,et al.  Independent Component Analysis , 1998, Springer US.

[14]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[15]  King-Sun Fu,et al.  Shape Discrimination Using Fourier Descriptors , 1977, IEEE Transactions on Pattern Analysis and Machine Intelligence.