Detecting recurrent passenger mutations in melanoma by targeted UV damage sequencing

[1]  John J. Wyrick,et al.  Molecular mechanism of UV damage modulation in nucleosomes , 2022, Computational and structural biotechnology journal.

[2]  D. Brash,et al.  Cyclobutane Pyrimidine Dimer Hyperhotspots as Sensitive Indicators of Keratinocyte UV Exposure † , 2022, Photochemistry and photobiology.

[3]  John J. Wyrick,et al.  Mapping atypical UV photoproducts in vitro and across the S. cerevisiae genome , 2021, STAR protocols.

[4]  John J. Wyrick,et al.  CTCF puts a new twist on UV damage and repair in skin cancer , 2021, Molecular & cellular oncology.

[5]  John J. Wyrick,et al.  CTCF binding modulates UV damage formation to promote mutation hot spots in melanoma , 2021, The EMBO journal.

[6]  P. Lambert,et al.  Role of IQGAP1 in Carcinogenesis , 2021, Cancers.

[7]  E. Larsson,et al.  Non-coding driver mutations in human cancer , 2021, Nature Reviews Cancer.

[8]  Hong-quan Yu,et al.  The Role of the Transcription Factor EGR1 in Cancer , 2021, Frontiers in Oncology.

[9]  OUP accepted manuscript , 2021, Nucleic Acids Research.

[10]  A. Gonzalez-Perez,et al.  Variable interplay of UV-induced DNA damage and repair at transcription factor binding sites , 2020, Nucleic acids research.

[11]  J. Svejstrup,et al.  Annotation matters: validating the discovery of cancer drivers , 2020, Molecular & cellular oncology.

[12]  A. Gonzalez-Perez,et al.  A compendium of mutational cancer driver genes , 2020, Nature Reviews Cancer.

[13]  C. Asquith,et al.  STK19: a new target for NRAS-driven cancer , 2020, Nature reviews. Drug discovery.

[14]  Rutao Cui,et al.  A Reply to ‘‘Evidence that STK19 Is Not an NRAS-Dependent Melanoma Driver” , 2020, Cell.

[15]  C. Swanton,et al.  Evidence That STK19 Is Not an NRAS-dependent Melanoma Driver , 2020, Cell.

[16]  Rajiv Kumar,et al.  Coding and noncoding somatic mutations in candidate genes in basal cell carcinoma , 2020, Scientific Reports.

[17]  Jun Yu,et al.  Analyses of non-coding somatic drivers in 2,658 cancer whole genomes , 2020, Nature.

[18]  John J. Wyrick,et al.  Asymmetric repair of UV damage in nucleosomes imposes a DNA strand polarity on somatic mutations in skin cancer , 2019, Genome research.

[19]  D. Brash,et al.  Genomic sites hypersensitive to ultraviolet radiation , 2019, Proceedings of the National Academy of Sciences.

[20]  Michael S. Lawrence,et al.  Passenger hotspot mutations in cancer driven by APOBEC3A and mesoscale genomic features , 2019, Science.

[21]  A. Gonzalez-Perez,et al.  Local Determinants of the Mutational Landscape of the Human Genome , 2019, Cell.

[22]  John J. Wyrick,et al.  Recurrent Noncoding Mutations in Skin Cancers: UV Damage Susceptibility or Repair Inhibition as Primary Driver? , 2019, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  G. Wei,et al.  Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis , 2019, Cell.

[24]  E. Larsson,et al.  Elevated pyrimidine dimer formation at distinct genomic bases underlies promoter mutation hotspots in UV-exposed cancers , 2018, bioRxiv.

[25]  Steven A Roberts,et al.  ETS transcription factors induce a unique UV damage signature that drives recurrent mutagenesis in melanoma , 2018, Nature Communications.

[26]  Junzhou Wu,et al.  Nucleotide-Resolution Genome-Wide Mapping of Oxidative DNA Damage by Click-Code-Seq. , 2018, Journal of the American Chemical Society.

[27]  Yu-Ying He,et al.  Mechanisms and prevention of UV‐induced melanoma , 2018, Photodermatology, photoimmunology & photomedicine.

[28]  X. Darzacq,et al.  Mutations in the promoter of the telomerase gene TERT contribute to tumorigenesis by a two-step mechanism , 2017, Science.

[29]  John J. Wyrick,et al.  Genome-wide maps of alkylation damage, repair, and mutagenesis in yeast reveal mechanisms of mutational heterogeneity , 2017, Genome research.

[30]  S. Adar,et al.  Dynamic maps of UV damage formation and repair for the human genome , 2017, Proceedings of the National Academy of Sciences.

[31]  Catherine A. Shang,et al.  Whole-genome landscapes of major melanoma subtypes , 2017, Nature.

[32]  C. Bertolotto,et al.  Focus on cutaneous and uveal melanoma specificities , 2017, Genes & development.

[33]  Erik Larsson,et al.  Recurrent promoter mutations in melanoma are defined by an extended context-specific mutational signature , 2017, bioRxiv.

[34]  Rajiv Kumar,et al.  TERT promoter mutations in telomere biology. , 2017, Mutation research.

[35]  R. C. Poulos,et al.  Functional Mutations Form at CTCF-Cohesin Binding Sites in Melanoma Due to Uneven Nucleotide Excision Repair across the Motif. , 2016, Cell reports.

[36]  J. Lieb,et al.  Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution , 2016, Proceedings of the National Academy of Sciences.

[37]  Martin S. Taylor,et al.  Mutational Biases Drive Elevated Rates of Substitution at Regulatory Sites across Cancer Types , 2016, PLoS genetics.

[38]  John J. Wyrick,et al.  Chromosomal landscape of UV damage formation and repair at single-nucleotide resolution , 2016, Proceedings of the National Academy of Sciences.

[39]  A. Gonzalez-Perez,et al.  OncodriveFML: a general framework to identify coding and non-coding regions with cancer driver mutations , 2016, Genome Biology.

[40]  Anushi Shah,et al.  Differential DNA repair underlies mutation hotspots at active promoters in cancer genomes , 2016, Nature.

[41]  S. Antonarakis,et al.  Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma , 2016, Nature Genetics.

[42]  Radhakrishnan Sabarinathan,et al.  Nucleotide excision repair is impaired by binding of transcription factors to DNA , 2015, Nature.

[43]  A. Nordheim,et al.  Frequent DPH3 promoter mutations in skin cancers , 2015, Oncotarget.

[44]  Nam Huh,et al.  Exome sequencing of desmoplastic melanoma identifies recurrent NFKBIE promoter mutations and diverse activating mutations in the MAPK pathway , 2015, Nature Genetics.

[45]  Nicholas T. Ingolia,et al.  Cell fate determination by ubiquitin-dependent regulation of translation , 2015, Nature.

[46]  Niko Välimäki,et al.  CTCF/cohesin-binding sites are frequently mutated in cancer , 2015, Nature Genetics.

[47]  Chibo Hong,et al.  The transcription factor GABP selectively binds and activates the mutant TERT promoter in cancer , 2015, Science.

[48]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[49]  D. Brash UV Signature Mutations , 2015, Photochemistry and photobiology.

[50]  E. Larsson,et al.  Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types , 2014, Nature Genetics.

[51]  C. Sander,et al.  Genome-wide analysis of non-coding regulatory mutations in cancer , 2014, Nature Genetics.

[52]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[53]  Stephen C. J. Parker,et al.  Whole-genome sequencing identifies a recurrent functional synonymous mutation in melanoma , 2013, Proceedings of the National Academy of Sciences.

[54]  D. Schadendorf,et al.  TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.

[55]  Lynda Chin,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2013, Science.

[56]  M. Stratton,et al.  Deciphering Signatures of Mutational Processes Operative in Human Cancer , 2013, Cell reports.

[57]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[58]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[59]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[60]  ENCODEConsortium,et al.  An Integrated Encyclopedia of DNA Elements in the Human Genome , 2012, Nature.

[61]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[62]  S. Ariyan,et al.  Incidence of the V600K mutation among melanoma patients with BRAF mutations, and potential therapeutic response to the specific BRAF inhibitor PLX4032 , 2010, Journal of Translational Medicine.

[63]  Aaron R. Quinlan,et al.  Bioinformatics Applications Note Genome Analysis Bedtools: a Flexible Suite of Utilities for Comparing Genomic Features , 2022 .

[64]  Tom Royce,et al.  A comprehensive catalogue of somatic mutations from a human cancer genome , 2010, Nature.

[65]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[66]  A. Wood,et al.  Transcript- and tissue-specific imprinting of a tumour suppressor gene , 2008, Human molecular genetics.

[67]  M. Berwick,et al.  Could BRAF mutations in melanocytic lesions arise from DNA damage induced by ultraviolet radiation? , 2006, The Journal of investigative dermatology.

[68]  Guifang Gao,et al.  Functional Analysis of Bladder Cancer-Related Protein Gene: A Putative Cervical Cancer Tumor Suppressor Gene in Cervical Carcinoma , 2006, Tumor Biology.

[69]  C. Friedberg Errol,et al.  DNA Repair and Mutagenesis, Second Edition , 2006 .

[70]  G. Pfeifer,et al.  Mutations induced by ultraviolet light. , 2005, Mutation research.

[71]  Alok J. Saldanha,et al.  Java Treeview - extensible visualization of microarray data , 2004, Bioinform..

[72]  G. Crooks,et al.  WebLogo: a sequence logo generator. , 2004, Genome research.

[73]  A. Sharrocks The ETS-domain transcription factor family , 2001, Nature Reviews Molecular Cell Biology.

[74]  C. Hänni,et al.  Molecular phylogeny of the ETS gene family , 1999, Oncogene.