When will it end? Long-lived intracontinental reactivation in central Australia

[1]  C. Conrad,et al.  The dynamic life of an oceanic plate , 2019, Tectonophysics.

[2]  M. Hand,et al.  Conservation of deep crustal heat production , 2018 .

[3]  I. Fletcher,et al.  Radiogenic heating and craton‐margin plate stresses as drivers for intraplate orogeny , 2017 .

[4]  A. Mansurov A continuum model of present-day crustal deformation in the Pamir-Tien Shan region constrained by GPS data , 2017 .

[5]  M. Wingate,et al.  Proterozoic crustal evolution of the Eucla basement, Australia: Implications for destruction of oceanic crust during emergence of Nuna , 2017 .

[6]  M. Pawley,et al.  Thermal history and differential exhumation across the Eastern Musgrave Province, South Australia: Insights from low-temperature thermochronology , 2017 .

[7]  S. Johnson,et al.  The role of radiogenic heat in prolonged intraplate reworking: The Capricorn Orogen explained? , 2015 .

[8]  C. Kirkland,et al.  Foreign contemporaries - Unravelling disparate isotopic signatures from Mesoproterozoic Central and Western Australia , 2015 .

[9]  I. Dunkl,et al.  A multi‐system geochronology in the Ad‐3 borehole, Pannonian Basin (Hungary) with implications for dating volcanic rocks by low‐temperature thermochronology and for interpretation of (U–Th)/He data , 2015 .

[10]  E. Tohver,et al.  Rapid cooling and exhumation in the western part of the Mesoproterozoic Albany-Fraser Orogen, Western Australia , 2015 .

[11]  A. Aitken,et al.  The Mesoproterozoic thermal evolution of the Musgrave Province in central Australia — Plume vs. the geological record , 2015 .

[12]  A. Camacho,et al.  Geometry of a large‐scale, low‐angle, midcrustal thrust (Woodroffe Thrust, central Australia) , 2015 .

[13]  M. Wingate,et al.  Piggy-back Supervolcanoes—Long-Lived, Voluminous, Juvenile Rhyolite Volcanism in Mesoproterozoic Central Australia , 2015 .

[14]  W. Collins,et al.  Compressional intracontinental orogens: Ancient and modern perspectives , 2014 .

[15]  C. Clark,et al.  Duration of high-pressure metamorphism and cooling during the intraplate Petermann Orogeny , 2013 .

[16]  M. Vallée Source time function properties indicate a strain drop independent of earthquake depth and magnitude , 2013, Nature Communications.

[17]  A. M. Thorne,et al.  Crustal architecture of the Capricorn Orogen, Western Australia and associated metallogeny , 2013 .

[18]  M. Wingate,et al.  Constraints and deception in the isotopic record; the crustal evolution of the west Musgrave Province, central Australia , 2013 .

[19]  M. Wingate,et al.  High-Temperature Granite Magmatism, Crust–Mantle Interaction and the Mesoproterozoic Intracontinental Evolution of the Musgrave Province, Central Australia , 2011 .

[20]  Sun-Lin Chung,et al.  Crustal–lithospheric structure and continental extrusion of Tibet , 2011, Journal of the Geological Society.

[21]  M. Wingate,et al.  Devil in the detail; The 1150-1000Ma magmatic and structural evolution of the Ngaanyatjarra Rift, west Musgrave Province, Central Australia , 2010 .

[22]  M. Hand,et al.  The anatomy of a deep intracontinental orogen , 2010 .

[23]  P. Betts,et al.  The architecture, kinematics, and lithospheric processes of a compressional intraplate orogen occurring under Gondwana assembly: The Petermann orogeny, central Australia , 2009 .

[24]  P. Betts,et al.  Constrained potential field modeling of the crustal architecture of the Musgrave Province in central Australia: Evidence for lithospheric strengthening due to crust‐mantle boundary uplift , 2009 .

[25]  O. Pfiffner Evolution of the north Alpine foreland basin in the Central Alps , 2009 .

[26]  M. Hand,et al.  Ediacaran intracontinental channel flow , 2009 .

[27]  J. Hermann,et al.  Mineral-scale trace element and U-Th-Pb age constraints on metamorphism and melting during the Petermann Orogeny (Central Australia) , 2009 .

[28]  P. Haute,et al.  Distant effects of India–Eurasia convergence and Mesozoic intracontinental deformation in Central Asia: Constraints from apatite fission-track thermochronology , 2007 .

[29]  P. Reiners,et al.  Zircon (U-Th)/He thermochronometry: He diffusion and comparisons with 40Ar/39Ar dating , 2004 .

[30]  M. Wingate,et al.  Warakurna large igneous province: A new Mesoproterozoic large igneous province in west-central Australia , 2004 .

[31]  J. H. Kruhl Prism- and basal-plane parallel subgrain boundaries in quartz: a microstructural geothermobarometer , 2003 .

[32]  R. Heilbronner,et al.  The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C , 2002 .

[33]  M. Sandiford,et al.  Tectonic feedback and the ordering of heat producing elements within the continental lithosphere , 2002 .

[34]  K. Farley,et al.  He diffusion and (U–Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte , 2002 .

[35]  D. Vaughan,et al.  Devil in the Detail , 2001, Science.

[36]  J. Schumacher,et al.  Sphene (titanite): phase relations and role as a geochronometer , 2001 .

[37]  I. Mcdougall,et al.  Intracratonic, strike‐slip partitioned transpression and the formation and exhumation of eclogite facies rocks: An example from the Musgrave Block, central Australia , 2000 .

[38]  S. Marshak,et al.  Inversion of Proterozoic extensional faults: An explanation for the pattern of Laramide and Ancestral Rockies intracratonic deformation, United States , 2000 .

[39]  Scrimgeour,et al.  Regional high‐pressure metamorphism during intracratonic deformation: the Petermann Orogeny, central Australia , 1999 .

[40]  Mike Sandiford,et al.  Intraplate deformation in central Australia, the link between subsidence and fault reactivation , 1999 .

[41]  Mike Sandiford,et al.  Controls on the locus of intraplate deformation in central Australia , 1998 .

[42]  M. Wingate,et al.  Ion microprobe U–Pb ages for Neoproterozoic basaltic magmatism in south-central Australia and implications for the breakup of Rodinia , 1998 .

[43]  B. Pluijm,et al.  Paleostress in Cratonic North America: Implications for Deformation of Continental Interiors , 1997 .

[44]  R. Rudnick,et al.  Nature and composition of the continental crust: A lower crustal perspective , 1995 .

[45]  A. Camacho,et al.  Some isotopic constraints on the evolution of the granulite and upper amphibolite facies terranes in the eastern Musgrave Block, central Australia , 1995 .

[46]  M. Zoback,et al.  Stress field constraints on intraplate seismicity in eastern North America , 1992 .

[47]  K. Lambeck,et al.  Deep crustal structure of the Musgrave Block, central Australia: Results from teleseismic travel-time anomalies , 1992 .

[48]  P. Delpech,et al.  Intraplate seismicity : new seismotectonic data in Western Europe , 1990 .

[49]  O. Stephansson,et al.  Global patterns of tectonic stress , 1989, Nature.

[50]  P. Molnar Continental tectonics in the aftermath of plate tectonics , 1988, Nature.

[51]  P. R. Cobbold,et al.  Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine , 1982 .

[52]  P. England,et al.  A thin viscous sheet model for continental deformation , 1982 .

[53]  Peter Molnar,et al.  Active faulting and cenozoic tectonics of the Tien Shan, Mongolia, and Baykal Regions , 1979 .

[54]  C. M. Gray Geochronology of granulite‐facies gneisses in the western Musgrave Block, Central Australia , 1978 .

[55]  T. Bell Progressive deformation and reorientation of fold axes in a ductile mylonite zone: the woodroffe thrust , 1978 .

[56]  P. Molnar,et al.  Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. , 1975, Science.

[57]  J. Dewey,et al.  Mountain belts and the new global tectonics , 1970 .

[58]  D. McKenzie,et al.  The North Pacific: an Example of Tectonics on a Sphere , 1967, Nature.

[59]  C. Kirkland,et al.  An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: From subduction magmatism to cratonization , 2017 .

[60]  H. Howard,et al.  Ultra-hot Mesoproterozoic evolution of intracontinental central Australia , 2015 .

[61]  Alan Aitken,et al.  The burning heart - The Proterozoic geology and geological evolution of the west Musgrave Region, central Australia , 2015 .

[62]  M. Vallée,et al.  SCARDEC: a new technique for the rapid determination of seismic moment magnitude, focal mechanism and source time functions for large earthquakes using body‐wave deconvolution , 2011 .

[63]  M. Wingate,et al.  Geochemistry, geochronology and petrogenesis of Mesoproterozoic felsic rocks in the west Musgrave Province, Central Australia, and implications for the Mesoproterozoic tectonic evolution of the region , 2010 .

[64]  M. Hand,et al.  Thrust Tectonic Styles of the Intracratonic Alice Springs and Petermann Orogenies, Central Australia , 2004 .

[65]  A. Camacho An isotopic study of deep-crustal orogenic processes : Musgrave Block, Central Australia , 1997 .

[66]  M. Jessell Grain-boundary migration microstructures in a naturally deformed quartzite , 1987 .

[67]  D. Davidson Musgrave Block , 1974, Nature.