A critical exponent for shortest-path scaling in continuum percolation

We carry out Monte Carlo experiments to study the scaling behavior of shortest path lengths in continuum percolation. These studies suggest that the critical exponent governing this scaling is the same for both continuum and lattice percolation. We use splitting, a technique that has not yet been fully exploited in the physics literature, to increase the speed of our simulations. This technique can also be applied to other models where clusters are grown sequentially.

[1]  Shlomo Havlin,et al.  PROBABILITY DISTRIBUTION OF THE SHORTEST PATH ON THE PERCOLATION CLUSTER, ITS BACKBONE, AND SKELETON , 1998 .

[2]  H. E. Stanley,et al.  The fractal dimension of the minimum path in two- and three-dimensional percolation , 1988 .

[3]  B. Bollobás,et al.  Percolation, Connectivity, Coverage and Colouring of Random Geometric Graphs , 2008 .

[4]  H. Bauke Parameter estimation for power-law distributions by maximum likelihood methods , 2007, 0704.1867.

[5]  Salvatore Torquato,et al.  Two‐point cluster function for continuum percolation , 1988 .

[6]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[7]  Paul Glasserman,et al.  Multilevel Splitting for Estimating Rare Event Probabilities , 1999, Oper. Res..

[8]  Chang-Long Yao,et al.  Large deviations for the graph distance in supercritical continuum percolation , 2011 .

[9]  J. Quintanilla,et al.  Efficient measurement of the percolation threshold for fully penetrable discs , 2000 .

[10]  H E Stanley,et al.  Percolation threshold, Fisher exponent, and shortest path exponent for four and five dimensions. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  P. Grassberger Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000 , 1997 .

[12]  Dieter Jungnickel,et al.  Graphs, Networks, and Algorithms , 1980 .

[13]  P. Grassberger Sequential Monte Carlo Methods for Protein Folding , 2004, cond-mat/0408571.

[14]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[15]  R. Ziff,et al.  Precise determination of the critical percolation threshold for the three- dimensional ''Swiss cheese'' model using a growth algorithm , 2001 .

[16]  P. Grassberger Pair Connectedness and Shortest Path Scaling in Critical Percolation , 1999 .

[17]  G. Weiss,et al.  The chemical distance distribution in percolation clusters , 1985 .

[18]  Marnix J. J. Garvels,et al.  The splitting method in rare event simulation , 2000 .

[19]  J. Quintanilla,et al.  Asymmetry in the percolation thresholds of fully penetrable disks with two different radii. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  Exact critical exponent for the shortest-path scaling function in percolation , 1999, cond-mat/9907305.

[21]  A. Campa,et al.  Kuramoto model of synchronization: equilibrium and nonequilibrium aspects , 2014, 1403.2083.

[22]  Salvatore Torquato,et al.  LETTER TO THE EDITOR: Precise determination of the critical threshold and exponents in a three-dimensional continuum percolation model , 1997 .

[23]  E. T. Gawlinski,et al.  Continuum percolation in two dimensions: Monte Carlo tests of scaling and universality for non-interacting discs , 1981 .

[24]  Salvatore Torquato,et al.  Pair connectedness and mean cluster size for continuum‐percolation models: Computer‐simulation results , 1988 .

[25]  Cristopher Moore,et al.  Continuum Percolation Thresholds in Two Dimensions , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  H. Stanley,et al.  Scaling of the Distribution of Shortest Paths in Percolation , 1998, cond-mat/9908435.

[27]  L. Sander,et al.  The barrier method: a technique for calculating very long transition times. , 2010, The Journal of chemical physics.

[28]  Z. Alexandrowicz,et al.  Critically branched chains and percolation clusters , 1980 .

[29]  S. Havlin,et al.  Diffusion in disordered media , 2002 .

[30]  Youjin Deng,et al.  Shortest-path fractal dimension for percolation in two and three dimensions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  P. Leath Cluster size and boundary distribution near percolation threshold , 1976 .

[32]  David A. Adams,et al.  Algorithms for Measuring Extremely Rare Events in Statistical Physics , 2011 .

[33]  H. Westerhoff,et al.  Non-equilibrium thermodynamics of light absorption , 1999 .

[34]  P Grassberger,et al.  Numerical studies of critical percolation in three dimensions , 1992 .

[35]  T. Mattfeldt Stochastic Geometry and Its Applications , 1996 .

[36]  Michel L. Goldstein,et al.  Problems with fitting to the power-law distribution , 2004, cond-mat/0402322.