Contextual Equivalence for Signal Flow Graphs
暂无分享,去创建一个
Filippo Bonchi | Fabio Zanasi | Robin Piedeleu | Pawel Sobocinski | F. Bonchi | P. Sobocinski | R. Piedeleu | F. Zanasi
[1] A. Carboni,et al. Cartesian bicategories I , 1987 .
[2] Dan R. Ghica,et al. Diagrammatic Reasoning for Delay-Insensitive Asynchronous Circuits , 2013, Computation, Logic, Games, and Quantum Foundations.
[3] Dan R. Ghica,et al. Categorical semantics of digital circuits , 2016, 2016 Formal Methods in Computer-Aided Design (FMCAD).
[4] Nobuko Yoshida,et al. On Reduction-Based Process Semantics , 1995, Theor. Comput. Sci..
[5] J. Willems. The Behavioral Approach to Open and Interconnected Systems , 2007, IEEE Control Systems.
[6] Bob Coecke,et al. Interacting Quantum Observables , 2008, ICALP.
[7] Dusko Pavlovic,et al. Monoidal computer I: Basic computability by string diagrams , 2012, Inf. Comput..
[8] James H. Morris,et al. Lambda-calculus models of programming languages. , 1969 .
[9] Robin Milner,et al. A Calculus of Communicating Systems , 1980, Lecture Notes in Computer Science.
[10] Jan J. M. M. Rutten,et al. A tutorial on coinductive stream calculus and signal flow graphs , 2005, Theor. Comput. Sci..
[11] Rocco De Nicola,et al. Testing Equivalences for Processes , 1984, Theor. Comput. Sci..
[12] Filippo Bonchi,et al. The Calculus of Signal Flow Diagrams I: Linear relations on streams , 2017, Inf. Comput..
[13] Dan R. Ghica,et al. A structural and nominal syntax for diagrams , 2017, QPL.
[14] Filippo Bonchi,et al. Graphical Affine Algebra , 2019, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).
[15] Aleks Kissinger,et al. Picturing Quantum Processes: A First Course in Quantum Theory and Diagrammatic Reasoning , 2017 .
[16] Filippo Bonchi,et al. Full Abstraction for Signal Flow Graphs , 2015, POPL.
[17] Jan J. M. M. Rutten. Rational Streams Coalgebraically , 2008, Log. Methods Comput. Sci..
[18] Filippo Bonchi,et al. Interacting Hopf Algebras , 2014, ArXiv.
[19] Filippo Bonchi,et al. Diagrammatic algebra: from linear to concurrent systems , 2019, Proc. ACM Program. Lang..
[20] Stefan Milius. A Sound and Complete Calculus for Finite Stream Circuits , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.
[21] Brendan Fong,et al. Corelations are the prop for extraspecial commutative Frobenius monoids , 2016, 1601.02307.
[22] Joachim Kock,et al. Frobenius Algebras and 2-D Topological Quantum Field Theories , 2004 .
[23] C. A. R. Hoare,et al. Communicating sequential processes , 1978, CACM.
[24] Fabio Zanasi,et al. The Algebra of Partial Equivalence Relations , 2016, MFPS.
[25] Fabio Zanasi,et al. Interacting Hopf Algebras: the theory of linear systems , 2018, ArXiv.
[26] P. Selinger. A Survey of Graphical Languages for Monoidal Categories , 2009, 0908.3347.
[27] Filippo Bonchi,et al. A Categorical Semantics of Signal Flow Graphs , 2014, CONCUR.
[28] Roberto Bruni,et al. Some algebraic laws for spans , 2001, Electron. Notes Theor. Comput. Sci..
[29] John C. Baez,et al. Categories in Control , 2014, 1405.6881.
[30] Samson Abramsky,et al. A categorical semantics of quantum protocols , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..
[31] Robin Milner,et al. Barbed Bisimulation , 1992, ICALP.
[32] Dominic R. Verity,et al. ∞-Categories for the Working Mathematician , 2018 .
[33] Marcello M. Bonsangue,et al. (Co)Algebraic Characterizations of Signal Flow Graphs , 2014, Horizons of the Mind.
[34] BonchiFilippo,et al. Full Abstraction for Signal Flow Graphs , 2015 .
[35] S. Maclane,et al. Categorical Algebra , 2007 .
[36] Samuel J. Mason,et al. Feedback Theory-Some Properties of Signal Flow Graphs , 1953, Proceedings of the IRE.
[37] Dusko Pavlovic,et al. Monoidal computer II: Normal complexity by string diagrams , 2014, ArXiv.