Collisional radiative coarse-grain model for ionization in air

We present a reduced kinetic mechanism for the modeling of the behavior of the electronic states of the atomic species in air mixtures. The model is built by lumping the electronically excited states of the atomic species and by performing Maxwell-Boltzmann averages of the rate constants describing the elementary kinetic processes of the individual states within each group. The necessary reaction rate coefficients are taken from the model compiled by Bultel et al. [“Collisional-radiative model in air for earth re-entry problems,” Phys. Plasmas 13, 043502 (2006)10.1063/1.2194827]. The reduced number of pseudo-states considered leads to a significant reduction of the computational cost, thus enabling the application of the state of the art collisional radiative models to bi-dimensional and three-dimensional problems. The internal states of the molecular species are assumed to be in equilibrium. The rotational energy mode is assumed to quickly equilibrate with the translational energy mode at the kinetic tem...

[1]  Mario Capitelli,et al.  Self-Consistent Model of Chemical, Vibrational, Electron Kinetics in Nozzle Expansion , 2001 .

[2]  J. Loureiro,et al.  Two-temperature models for nitrogen dissociation , 2007 .

[3]  William F. Bailey,et al.  Governing Equations for Weakly Ionized Plasma Flowfields of Aerospace Vehicles , 2002 .

[4]  P. Gnoffo Planetary-Entry Gas Dynamics , 1999 .

[5]  Olivier Chazot,et al.  Electronic Excitation of Atoms and Molecules for the FIRE II Flight Experiment , 2011 .

[6]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .

[7]  F. Esposito,et al.  Molecular Dynamics for State-to-State Kinetics of Non-Equilibrium Molecular Plasmas: State of Art and Perspectives , 2009 .

[8]  P. Vervisch,et al.  Influence of Ar(2)+ in an argon collisional-radiative model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  P. Omaly,et al.  Global rate coefficients for ionization and recombination of carbon, nitrogen, oxygen, and argon , 2012 .

[10]  W. Bailey,et al.  Reactive and nonreactive vibrational energy exchanges in nonequilibrium hypersonic flows , 2003 .

[11]  M. Gryziński,et al.  CLASSICAL THEORY OF ELECTRONIC AND IONIC INELASTIC COLLISIONS. Report No. 59/I-A , 1959 .

[12]  I. Adamovich,et al.  Vibrational Energy Transfer Rates Using a Forced Harmonic Oscillator Model , 1998 .

[13]  Mario Carbonaro,et al.  Thermodynamic and Transport Properties for Inductive Plasma Modeling , 1999 .

[14]  O. Zatsarinny,et al.  Electron Collisional Excitation Rates for O I Using the B-Spline R-Matrix Approach , 2003 .

[15]  R. S. Devoto Simplified Expressions for the Transport Properties of Ionized Monatomic Gases , 1967 .

[16]  Christopher O. Johnston,et al.  Non-Boltzmann Modeling for Air Shock-Layer Radiation at Lunar-Return Conditions , 2008 .

[17]  M. Liou A Sequel to AUSM , 1996 .

[18]  P. Varghese,et al.  A simple model for state-specific diatomic dissociation , 1993 .

[19]  Anne Bourdon,et al.  Ionization and recombination rates of atomic oxygen in high-temperature air plasma flows , 1998 .

[20]  I. Adamovich,et al.  Semiclassical modeling of state-specific dissociation rates in diatomic gases , 2000 .

[21]  Graham V. Candler,et al.  Computation of weakly ionized hypersonic flows in thermochemical nonequilibrium , 1991 .

[22]  Christopher O. Johnston,et al.  Nonequilibrium Stagnation-Line Radiative Heating for Fire II , 2008 .

[23]  Charles H. Kruger,et al.  Arrays of radiative transition probabilities for the N2 first and second positive, no beta and gamma, N+2 first negative, and O2 Schumann-Runge band systems , 1992 .

[24]  Serge Prudhomme,et al.  On the assessment of a Bayesian validation methodology for data reduction models relevant to shock tube experiments , 2012 .

[25]  Olivier Chazot,et al.  Fire II Flight Experiment Analysis by Means of a Collisional-Radiative Model , 2009 .

[26]  Soon,et al.  Collisional-radiative nonequilibrium in partially ionized atomic nitrogen. , 1989, Physical review. A, General physics.

[27]  P. Varghese,et al.  Evaluation of simple rate expressions for vibration-dissociation coupling , 1994 .

[28]  N. Badnell,et al.  Calculated cross sections and measured rate coefficients for electron-impact excitation of neutral and singly ionized nitrogen , 1998 .

[29]  M. Capitelli,et al.  The temporal evolution of population densities of excited states in atomic oxygen thin plasmas , 1976 .

[30]  G. Candler,et al.  Detailed simulation of nitrogen dissociation in stagnation regions , 1997 .

[31]  T. Magin,et al.  Transport algorithms for partially ionized and unmagnetized plasmas , 2004 .

[32]  V. Guerra,et al.  Nonequilibrium Dissociation Processes in Hyperbolic Atmospheric Entries , 2006 .

[33]  Iain D. Boyd,et al.  State-resolved thermochemical nonequilibrium analysis of hydrogen mixture flows , 2012 .

[34]  S. Surzhikov Radiative-Collisional Models in Non-Equilibrium Aerothermodynamics of Entry Probes , 2012 .

[35]  Serge Prudhomme,et al.  Probabilistic models and uncertainty quantification for the ionization reaction rate of atomic Nitrogen , 2011, J. Comput. Phys..

[36]  J.-L. Cambier,et al.  Ionizing shocks in argon. Part I: Collisional-radiative model and steady-state structure , 2011 .

[37]  L. Carlson,et al.  Effect of electron temperature and impact ionization on Martian return AOTV flowfields , 1989 .

[38]  Marco Panesi,et al.  Rovibrational internal energy transfer and dissociation of N2(1Σg+)-N(4S(u)) system in hypersonic flows. , 2013, The Journal of chemical physics.

[39]  Charles H. Kruger,et al.  VffiRATIONALLY-SPECIFIC COLLISIONAL-RADIATIVE MODEL FOR NONEQUILIBRIUM NITROGEN PLASMAS , 1998 .

[40]  H. W. Drawin,et al.  Atom-atom excitation and ionization in shock waves of the noble gases , 1973 .

[41]  Marco Panesi,et al.  QCT-based vibrational collisional models applied to nonequilibrium nozzle flows , 2012 .

[42]  D. R. Bates,et al.  Recombination between electrons and atomic ions, I. Optically thin plasmas , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  Graham V. Candler,et al.  Vibrational energy conservation with vibration-dissociation coupling: General theory and numerical studies , 1995 .

[44]  S. O. Kastner,et al.  The neutral oxygen spectrum. 1: Collisionally excited level populations and line intensities under optically thin conditions , 1995 .

[45]  J. Wilson,et al.  Measurements of the free-bound and free-free continua of nitrogen, oxygen and air , 1965 .

[46]  Bourdon,et al.  Three-body recombination rate of atomic nitrogen in low-pressure plasma flows. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[47]  Anne Bourdon,et al.  Collisional-radiative model in air for earth re-entry problems , 2006 .

[48]  Andrea Lani,et al.  The COOLFluiD Framework: Design Solutions for High Performance Object Oriented Scientific Computing Software , 2005, International Conference on Computational Science.

[49]  Serge Prudhomme,et al.  Estimation of the nitrogen ionization reaction rate using electric arc shock tube data and Bayesian model analysis , 2012 .

[50]  D. Schwenke A theoretical prediction of hydrogen molecule dissociation-recombination rates including an accurate treatment of internal state nonequilibrium effects , 1990 .

[51]  Chul Park Collisional ionization and recombination rates of atomic nitrogen. , 1969 .

[52]  Gérard Degrez,et al.  Transport properties of partially ionized and unmagnetized plasmas. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.