The stress-optic effect in optical fibers

The importance of the photoelastic effect in controlling polarization in optical fibers is discussed. Measurements of the stress-optic coefficient, its dispersion, and temperature dependence are reported using a fiber measurement method. The results compare closely to data obtained for bulk silica by an extrapolation technique. It is shown that the dispersion of the stress-optic coefficient can have a significant effect on the performance of birefringent fibers and of fiber birefringent devices. Furthermore, the temperature dependence is sufficiently large to be troublesome in fiber sensors.

[1]  G. W. Morey The Properties of Glass , 1939, Nature.

[2]  S. Spinner,et al.  Elastic Moduli of Glasses at Elevated Temperatures by a Dynamic Method , 1956 .

[3]  William Primak,et al.  Photoelastic Constants of Vitreous Silica and Its Elastic Coefficient of Refractive Index , 1959 .

[4]  I. Malitson Interspecimen Comparison of the Refractive Index of Fused Silica , 1965 .

[5]  R. A. Miller,et al.  Determination of the individual strain-optic coefficients of glass by an ultrasonic technique. , 1968, Applied optics.

[6]  R. Stolen,et al.  Near-infrared sources in the 1-1.3 μm region by efficient stimulated Raman emission in glass fibers , 1977 .

[7]  V. Ramaswamy,et al.  Polarization characteristics of noncircular core single-mode fibers. , 1978, Applied optics.

[8]  S. Rashleigh,et al.  Polarization mode dispersion in single-mode fibers. , 1978, Optics letters.

[9]  Profile dispersion measurements for optical fibres over the wavelength range 350 to 1900nm , 1978 .

[10]  Thomas G. Giallorenzi,et al.  Polarization effects on single‐mode optical fiber sensors , 1979 .

[11]  S. C. Rashleigh,et al.  Magneto‐optic current sensing with birefringent fibers , 1979 .

[12]  P. Cielo,et al.  Fiber optic hydrophone: improved strain configuration and environmental noise protection. , 1979, Applied optics.

[13]  R. Stolen,et al.  Faraday rotation in highly birefringent optical fibers , 1979, IEEE Journal of Quantum Electronics.

[14]  R. Ulrich,et al.  Polarization optics of twisted single-mode fibers. , 1979, Applied optics.

[15]  N. Imoto,et al.  Birefringence in single-mode optical fiber due to elliptical core deformation and stress anisotropy , 1980 .

[16]  M. Monerie,et al.  Polarisation-maintaining single-mode fibre cable design , 1980 .

[17]  A. Smith,et al.  Birefringence induced by bends and twists in single-mode optical fiber. , 1980, Applied optics.

[18]  M Johnson,et al.  Single-mode-fiber birefringent filters. , 1980, Optics letters.

[19]  S. Rashleigh,et al.  Bending-induced birefringence in single-mode fibers. , 1980, Optics letters.

[20]  H. Lèfevre,et al.  Single-mode fibre fractional wave devices and polarisation controllers , 1980 .

[21]  S. Rashleigh,et al.  Acoustic sensing with a single coiled monomode fiber. , 1980, Optics letters.

[22]  T. Katsuyama,et al.  Low-loss single-polarisation fibres , 1981 .

[23]  David N. Payne,et al.  Production of single-mode fibres with negligible intrinsic birefringence and polarisation mode dispersion , 1981 .

[24]  D N Payne,et al.  Birefringence and polarization mode-dispersion in spun single-mode fibers. , 1981, Applied Optics.

[25]  Polarisation maintenance in circularly birefringent fibres , 1981 .

[26]  J. Simon,et al.  Progress towards heterodyne-type single-mode fiber communication systems , 1981 .

[27]  D. Payne,et al.  Development of low- and high-birefringence optical fibers , 1982 .

[28]  D. Payne,et al.  Faraday rotation in coiled, monomode optical fibers: isolators, filters, and magnetic sensors. , 1982, Optics letters.