Induced Density of States model for weakly-interacting organic semiconductor interfaces

The Induced Density of Interface States model is revisited and discussed for weakly-interacting organic semiconductor junctions. First, unreactive ‘ideal’ Au/organic interfaces are analyzed and described as a function of the organic Charge Neutrality Level (CNL) and the slope parameter SMO specific to the case of Au: these values are similar, though not necessarily equal, to those obtained from a fit to reactive and unreactive metal/organic interfaces. Then, using the information provided by the Au/organic cases, we obtain the organic/organic screening parameters and calculate molecular level offsets without any adjustable parameter. The good agreement found between our theoretical results and experimental data for weakly-interacting metal/organic and organic/organic interfaces shows that our analysis in terms of the organic CNL and the corresponding (SMO or SOO) slope parameter provides a consistent and predictive description of the energy level alignment at these interfaces.

[1]  S. Forrest,et al.  Layer-by-layer quasi-epitaxial growth of a crystalline organic thin film , 1995 .

[2]  Tersoff Schottky barriers and semiconductor band structures. , 1985, Physical review. B, Condensed matter.

[3]  S. Forrest,et al.  In situ studies of morphology, strain, and growth modes of a molecular organic thin film , 1997 .

[4]  S. Forrest,et al.  Quantum size effects of charge-transfer excitonsin nonpolar molecular organic thin films , 1997 .

[5]  M. Nascimento,et al.  The nature of the chemical bond , 2008 .

[6]  A. Kahn,et al.  Energy-level alignment at interfaces between metals and the organic semiconductor 4,4′-N,N′-dicarbazolyl-biphenyl , 1998 .

[7]  Stephen R. Forrest,et al.  Ultrathin Organic Films Grown by Organic Molecular Beam Deposition and Related Techniques. , 1997, Chemical reviews.

[8]  J. C. Scott,et al.  Metal–organic interface and charge injection in organic electronic devices , 2003 .

[9]  Antoine Kahn,et al.  Impact of an interface dipole layer on molecular level alignment at an organic-conductor interface studied by ultraviolet photoemission spectroscopy , 2004 .

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  N. S. Barnett,et al.  Private communication , 1969 .

[12]  M. Knupfer,et al.  Origin of the interface dipole at interfaces between undoped organic semiconductors and metals , 2005 .

[13]  Mixing of interface dipole and band bending at organic/metal interfaces in the case of exponentially distributed transport states , 2003 .

[14]  C. Guarneri Cornell University Press , 1991 .

[15]  W. R. Salaneck,et al.  Characterization of the interface dipole at organic/ metal interfaces. , 2002, Journal of the American Chemical Society.

[16]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[17]  Princeton University,et al.  Dipole formation at metal/PTCDA interfaces: Role of the Charge Neutrality Level , 2004 .

[18]  K. Seki,et al.  ENERGY LEVEL ALIGNMENT AND INTERFACIAL ELECTRONIC STRUCTURES AT ORGANIC/METAL AND ORGANIC/ORGANIC INTERFACES , 1999 .

[19]  Antoine Kahn,et al.  Molecular level alignment at organic semiconductor-metal interfaces , 1998 .

[20]  C. Tang,et al.  Organic Electroluminescent Diodes , 1987 .

[21]  Antoine Kahn,et al.  Impact of electrode contamination on the α-NPD/Au hole injection barrier , 2005 .

[22]  X. Crispin Interface dipole at organic/metal interfaces and organic solar cells , 2004 .

[23]  Chongfei Shen,et al.  The role of interface states in controlling the electronic structure of Alq3/reactive metal contacts , 2001 .

[24]  Fernando Flores,et al.  Doping-induced realignment of molecular levels at organic–organic heterojunctions , 2006 .

[25]  J. Rowe,et al.  Influence of substrate temperature on epitaxial copper phthalocyanines studied by photoemission spectroscopy , 2004 .

[26]  M. Knupfer,et al.  Full characterization of the interface between the organic semiconductor copper phthalocyanine and gold , 2002 .

[27]  C. Wöll,et al.  Exchangelike effects for closed-shell adsorbates: interface dipole and work function. , 2002, Physical review letters.

[28]  Weiying Gao,et al.  Energy level alignment at organic heterojunctions : Role of the charge neutrality level , 2005 .

[29]  W. Mönch Chemical trends of barrier heights in metal-semiconductor contacts: on the theory of the slope parameter , 1996 .

[30]  F. Flores,et al.  On the formation of semiconductor interfaces , 1987 .

[31]  A. Kahn,et al.  Metal-dependent charge transfer and chemical interaction at interfaces between 3,4,9,10-perylenetetracarboxylic bisimidazole and gold, silver and magnesium , 2000 .

[32]  K. Leo,et al.  Epitaxial growth of 3,4,9,10-perylene-tetracarboxylic-dianhydride on Au(111): A STM and RHEED study , 1997 .

[33]  A. Kahn,et al.  Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine with tetrafluorotetracyanoquinodimethane , 2003 .

[34]  J. Schaefer,et al.  Polycyclic aromates on close-packed metal surfaces: functionalization, molecular chemisorption and organic epitaxy , 2004 .

[35]  Z. G. Soos,et al.  Electronic polarization at surfaces and thin films of organic molecular crystals: PTCDA , 2002 .

[36]  Princeton University,et al.  Barrier formation at metal-organic interfaces: dipole formation and the charge neutrality level , 2004 .

[37]  K. Seki,et al.  Theoretical study of n-alkane adsorption on metal surfaces , 2004 .