EVOLUTION OF MAGNETIC FIELDS IN HIGH MASS STAR FORMATION: SUBMILLIMETER ARRAY DUST POLARIZATION IMAGE OF THE ULTRACOMPACT H ii REGION G5.89−0.39

We report high angular resolution (3″) Submillimeter Array (SMA) observations of the molecular cloud associated with the Ultracompact H ii region G5.89 − 0.39. Imaged dust continuum emission at 870 μm reveals significant linear polarization. The position angles (P.A.s) of the polarization vary enormously but smoothly in a region of 2 × 104 AU. Based on the distribution of the P.A.s and the associated structures, the polarized emission can be separated roughly into two components. The component “x” is associated with a well-defined dust ridge at 870 μm, and is likely tracing a compressed B field. The component “o” is located at the periphery of the dust ridge and is probably from the original B field associated with a pre-existing extended structure. The global B field morphology in G5.89, as inferred from the P.A.s, is clearly disturbed by the expansion of the H ii region and the molecular outflows. Using the Chandrasekhar–Fermi method, we estimate from the smoothness of the field structures that the B field strength in the plane of sky can be no more than 2–3 mG. We then compare the energy densities in the radiation, the B field, and the mechanical motions as deduced from the C17O 3-2 line emission. We conclude that the B field structures are already overwhelmed and dominated by the radiation, outflows, and turbulence from the newly formed massive stars.

[1]  Daniel P. Marrone,et al.  The submillimeter array polarimeter , 2008, Astronomical Telescopes + Instrumentation.

[2]  U. Virginia,et al.  Subarcsecond Submillimeter Imaging of the Ultracompact H II Region G5.89-0.39 , 2008, 0803.0587.

[3]  L. Bronfman,et al.  Interferometric Mapping of Magnetic Fields: The Massive Star-forming Region G34.4+0.23 MM , 2008, 0801.4316.

[4]  G. Kowal,et al.  Studies of Regular and Random Magnetic Fields in the ISM: Statistics of Polarization Vectors and the Chandrasekhar-Fermi Technique , 2008, 0801.0279.

[5]  A. Chrysostomou,et al.  Magnetic fields in massive star-forming regions , 2007, 0709.0256.

[6]  A. Lazarian,et al.  Radiative torques: analytical model and basic properties , 2007, 0707.0886.

[7]  A. Lazarian,et al.  Tracing Magnetic Fields with Aligned Grains , 2007, 0707.0858.

[8]  E. Zweibel,et al.  The Bipolar Outflow toward G5.89–0.39 , 2007 .

[9]  W. Goss,et al.  VLBA Observations of G5.89–0.39: OH Masers and Magnetic Field Structure , 2006, astro-ph/0610137.

[10]  J. Stone,et al.  Magnetohydrodynamic Evolution of H II Regions in Molecular Clouds: Simulation Methodology, Tests, and Uniform Media , 2006, astro-ph/0606539.

[11]  Ramprasad Rao,et al.  Magnetic Fields in the Formation of Sun-Like Stars , 2006, Science.

[12]  B. Matthews,et al.  Interferometric Mapping of Magnetic Fields: NGC 2071IR , 2006, astro-ph/0607356.

[13]  T. Henning,et al.  Outflows, Disks, and Stellar Content in a Region of High-Mass Star Formation: G5.89–0.39 with Adaptive Optics , 2006 .

[14]  P. Cortés,et al.  Interferometric Mapping of Magnetic Fields: G30.79 FIR 10 , 2006, astro-ph/0607357.

[15]  M. Reid,et al.  Full-Polarization Observations of OH Masers in Massive Star-forming Regions. I. Data , 2005, astro-ph/0505148.

[16]  W. D. Watson,et al.  Line Polarization of Molecular Lines at Radio Frequencies: The Case of DR 21(OH) , 2005, astro-ph/0504258.

[17]  P. Hofner,et al.  A Catalog of CH3OH 70-61 A+ Maser Sources in Massive Star-forming Regions , 2004 .

[18]  M. Walmsley,et al.  Polarized dust emission of magnetized molecular cloud cores , 2004, astro-ph/0410390.

[19]  M. Giannotti,et al.  Faraday Rotation of the Cosmic Microwave Background Polarization and Primordial Magnetic Field Properties , 2004, astro-ph/0405420.

[20]  D. O. Astronomy,et al.  Interstellar Turbulence I: Observations and Processes , 2004, astro-ph/0404451.

[21]  P. Ho,et al.  Mapping the Outflow from G5.89–0.39 in SiO J = 5 → 4 , 2004, astro-ph/0403524.

[22]  G. Rousset,et al.  Discovery of a Candidate for the Central Star of the Ultracompact H II Region G5.89–0.39 , 2003 .

[23]  J. Girart,et al.  Interferometric Mapping of Magnetic Fields in Star-forming Regions. III. Dust and CO Polarization in DR 21(OH) , 2003, astro-ph/0308051.

[24]  J. Girart,et al.  Interferometric Mapping of Magnetic Fields in Star-forming Regions. II. NGC 2024 FIR 5 , 2001, astro-ph/0110682.

[25]  James M. Stone,et al.  Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models , 2000, astro-ph/0008454.

[26]  J. Girart,et al.  Interferometric Mapping of Magnetic Fields in Star-forming Regions. I. W51 e1/e2 Molecular Cores , 2000, astro-ph/0107322.

[27]  F. Wyrowski,et al.  A C17O Survey toward Ultracompact H II Regions , 2000 .

[28]  D. Benford,et al.  350 Micron Images of Massive Star Formation Regions , 2000 .

[29]  R. Klessen,et al.  Control of star formation by supersonic turbulence , 2000, astro-ph/0301093.

[30]  J. Girart,et al.  Detection of Polarized CO Emission from the Molecular Outflow in NGC 1333 IRAS 4A , 1999, The Astrophysical journal.

[31]  E. Ostriker,et al.  Low-Mass Star Formation: Theory , 1999 .

[32]  Telemachos Ch. Mouschovias,et al.  Magnetic Fields and Star Formation: A Theory Reaching Adulthood , 1999 .

[33]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[34]  Telemachos Ch. Mouschovias,et al.  in The Origin of Stars and Planetary Systems , 1999 .

[35]  James M. Moran,et al.  The Submillimeter Array , 2004, Astronomical Telescopes and Instrumentation.

[36]  E. Serabyn,et al.  350 Micron Continuum Imaging of the Orion A Molecular Cloud with the Submillimeter High Angular Resolution Camera , 1998 .

[37]  M. Wright,et al.  High-Resolution Millimeter-Wave Mapping of Linearly Polarized Dust Emission: Magnetic Field Structure in Orion , 1998, astro-ph/9805288.

[38]  E. Churchwell,et al.  The Expansion Rate of and Distance to G5.89–0.39 , 1998 .

[39]  L. Bronfman,et al.  Evidence for a Dense, Cold Screen towards IRAS 18507+0121 , 1997 .

[40]  E. Churchwell Origin of the Mass in Massive Star Outflows , 1997 .

[41]  P. Ho,et al.  The Contracting Molecular Cores e1 and e2 in W51 , 1996 .

[42]  E. Churchwell,et al.  A survey of water maser emission toward ultracompact HII regions , 1996 .

[43]  J. Weingartner,et al.  Radiative Torques on Interstellar Grains: I. Superthermal Spinup , 1996, astro-ph/9605046.

[44]  R. Sault,et al.  Understanding radio polarimetry. II. Instrumental calibration of an interferometer array , 1996 .

[45]  F. Shu,et al.  Collapse of Magnetized Molecular Cloud Cores. II. Numerical Results , 1993 .

[46]  T. Mouschovias,et al.  Ambipolar diffusion and star formation : formation and contraction of axisymmetric cloud cores. II: Results , 1993 .

[47]  N. Evans,et al.  Extremely high velocity outflows. , 1993, astro-ph/9307011.

[48]  G. Umana,et al.  MAPPING THE OUTFLOW OF OH5.89-0.39 , 1990 .

[49]  E. Churchwell,et al.  The morphologies and physical properties of ultracompact H II regions , 1989 .

[50]  W. D. Watson,et al.  Linear polarization of molecular lines at radio frequencies , 1984 .

[51]  N. Kylafis Polarization of interstellar radio-frequency lines and magnetic field direction , 1983 .

[52]  R. Wilson,et al.  The relationship between carbon monoxide abundance and visual extinction in interstellar clouds. , 1982 .

[53]  N. Kylafis,et al.  On mapping the magnetic field direction in molecular clouds by polarization measurements , 1981 .

[54]  L. Spitzer,et al.  Note on the collapse of magnetic interstellar clouds. , 1976 .

[55]  A. Moorwood,et al.  Far-Infrared Observations of H II Regions from Balloon Altitudes , 1973 .

[56]  Enrico Fermi,et al.  Magnetic fields in spiral arms , 1953 .