ChipX: A Novel Microfluidic Chip for Counter-Diffusion Crystallization of Biomolecules and in Situ Crystal Analysis at Room Temperature

Microfluidic technology has opened new possibilities for the crystallization of biological macromolecules during the past decade. Microfluidic systems offer numerous advantages over conventional crystal growth methods. They enable easy handling of nanovolumes of solutions, extreme miniaturization, and parallelization of crystallization assays, especially for high-throughput screening applications. Our goal was to design a versatile, low cost, and easy-to-use crystallization chip based on counter-diffusion that is compatible with on-chip crystallographic characterization. The ChipX is a microfluidic chip made of cyclic olefin copolymer. It was used to grow crystals of biomolecules and perform complete X-ray diffraction analyses on synchrotron sources. Our results demonstrate that accurate crystallographic data can be collected at room temperature directly from ChipX microfluidic devices for both experimental single-wavelength anomalous dispersion phasing and structure refinement.

[1]  Claude Sauter,et al.  From Macrofluidics to Microfluidics for the Crystallization of Biological Macromolecules , 2007 .

[2]  Richard Giegé,et al.  Biocrystallography: Past, present, future , 2010, HFSP journal.

[3]  N E Chayen,et al.  New developments of the IMPAX small-volume automated crystallization system. , 1994, Acta crystallographica. Section D, Biological crystallography.

[4]  P. Andrew Karplus,et al.  Linking Crystallographic Model and Data Quality , 2012, Science.

[5]  Wilhelm Pfleging,et al.  Microfluidic chips for the crystallization of biomacromolecules by counter-diffusion and on-chip crystal X-ray analysis. , 2009, Lab on a chip.

[6]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[7]  Gwyndaf Evans,et al.  In situ macromolecular crystallography using microbeams , 2012, Acta crystallographica. Section D, Biological crystallography.

[8]  J. García‐Ruiz,et al.  Ab initio crystallographic structure determination of insulin from protein to electron density without crystal handling. , 2002, Acta crystallographica. Section D, Biological crystallography.

[9]  R. Stevens,et al.  In situ X-ray analysis of protein crystals in low-birefringent and X-ray transmissive plastic microchannels. , 2008, Acta crystallographica. Section D, Biological crystallography.

[10]  T. Tomizaki,et al.  SLS Crystallization Platform at Beamline X06DA—A Fully Automated Pipeline Enabling in Situ X-ray Diffraction Screening , 2011 .

[11]  Philippe Carpentier,et al.  Automated analysis of vapor diffusion crystallization drops with an X-ray beam. , 2004, Structure.

[12]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[13]  G. Labesse,et al.  In-plate protein crystallization, in situ ligand soaking and X-ray diffraction. , 2011, Acta crystallographica. Section D, Biological crystallography.

[14]  Jeremy L. Praissman,et al.  Life in the fast lane for protein crystallization and X-ray crystallography. , 2005, Progress in biophysics and molecular biology.

[15]  Meitian Wang,et al.  Optimal fine ϕ-slicing for single-photon-counting pixel detectors , 2011, Acta crystallographica. Section D, Biological crystallography.

[16]  Wanjun Wang,et al.  Microfabrication of an electromagnetic power relay using SU-8 based UV-LIGA technology , 2004 .

[17]  High-phasing-power lanthanide derivatives: taking advantage of ytterbium and lutetium for optimized anomalous diffraction experiments using synchrotron radiation. , 2003, Acta crystallographica. Section D, Biological crystallography.

[18]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[19]  Joseph D Ng,et al.  Counterdiffusion methods applied to protein crystallization. , 2009, Progress in biophysics and molecular biology.

[20]  Meitian Wang,et al.  Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector , 2011, Journal of synchrotron radiation.

[21]  From screen to structure with a harvestable microfluidic device , 2011, Acta crystallographica. Section F, Structural biology and crystallization communications.

[22]  S. Quake,et al.  A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Thomas R. Schneider,et al.  HKL2MAP: a graphical user interface for macromolecular phasing with SHELX programs , 2004 .

[24]  R. Ismagilov,et al.  Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets. , 2003, Journal of the American Chemical Society.

[25]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .