Chapter 5 - Set Oriented Numerical Methods for Dynamical Systems

This chapter focuses on set oriented numerical methods for dynamical systems. The set oriented numerical methods can be used to approximate different types of invariant sets or invariant manifolds but they also allow extracting statistical information on the dynamical behavior via the computation of natural invariant measures or almost invariant sets. In contrast to other numerical techniques, these methods do not rely on the computation of single long-term trajectories but rather use the information obtained from several short-term trajectories. Set oriented method can also be used for the computation of invariant manifolds. Although the method can, in principle, be applied to manifolds of arbitrary hyperbolic invariant sets. An important statistical characterization of the behavior of a dynamical system is given by so-called SRB (Sinai–Ruelle–Bowen) measures. The important property of these invariant measures is that they lend weight to a region in phase space according to the probability by which typical trajectories visit this region.

[1]  Edwin Kreuzer,et al.  Control of an Adaptive Refinement Technique of Generalized Cell Mapping by System Dynamics , 1999 .

[2]  D. Sorensen,et al.  4. The Implicitly Restarted Arnoldi Method , 1998 .

[3]  D. Ruelle,et al.  The Ergodic Theory of Axiom A Flows. , 1975 .

[4]  Michael Dellnitz,et al.  The Computation of Unstable Manifolds Using Subdivision and Continuation , 1996 .

[5]  David Ruelle,et al.  A MEASURE ASSOCIATED WITH AXIOM-A ATTRACTORS. , 1976 .

[6]  Jiu Ding,et al.  Finite approximations of Frobenius-Perron operators. A solution of Ulam's conjecture to multi-dimensional transformations , 1996 .

[7]  J. Yorke,et al.  On the existence of invariant measures for piecewise monotonic transformations , 1973 .

[8]  Qiang Du,et al.  High order approximation of the Frobenius-Perron operator , 1993 .

[9]  W. Tucker The Lorenz attractor exists , 1999 .

[10]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[11]  J. Dormand,et al.  High order embedded Runge-Kutta formulae , 1981 .

[12]  Gerhard Keller,et al.  Stochastic stability in some chaotic dynamical systems , 1982 .

[13]  Tien-Yien Li Finite approximation for the Frobenius-Perron operator. A solution to Ulam's conjecture , 1976 .

[14]  Oliver Junge,et al.  An adaptive subdivision technique for the approximation of attractors and invariant measures: proof of convergence , 2001 .

[15]  Konstantin Mischaikow,et al.  Conley index theory , 1995 .

[16]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[17]  Martin Rumpf,et al.  GRAPE - Eine objektorientierte Visualisierungs- und Numerikplattform , 1992, Inform. Forsch. Entwickl..

[18]  Michael Dellnitz,et al.  On the isolated spectrum of the Perron-Frobenius operator , 2000 .

[19]  O. Junge,et al.  On the Approximation of Complicated Dynamical Behavior , 1999 .

[20]  Konstantin Mischaikow,et al.  Exploring global dynamics: a numerical algorithm based on the conley index theory , 1995 .

[21]  Y. Kifer General random perturbations of hyperbolic and expanding transformations , 1986 .

[22]  S. Ulam A collection of mathematical problems , 1960 .

[23]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[24]  Lai-Sang Young,et al.  Sinai-Bowen-Ruelle measures for certain Hénon maps , 1993 .

[25]  J. Osborn Spectral approximation for compact operators , 1975 .

[26]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[27]  D. Ruelle,et al.  The ergodic theory of AxiomA flows , 1975 .

[28]  M. Dellnitz,et al.  An adaptive method for the approximation of the generalized cell mapping , 1997 .

[29]  Martin Golubitsky,et al.  Symmetry-increasing bifurcation of chaotic attractors , 1988 .

[30]  Gerhard Keller,et al.  Random perturbations of chaotic dynamical systems: stability of the spectrum , 1997, chao-dyn/9712016.

[31]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[32]  E. Kreuzer Numerische Untersuchung nichtlinearer dynamischer Systeme , 1987 .

[33]  Michael Dellnitz,et al.  Computation of Essential Molecular Dynamics by Subdivision Techniques , 1996, Computational Molecular Dynamics.

[34]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[35]  Gunter Ochs,et al.  Numerical Approximation of Random Attractors , 1999 .

[36]  M. Dellnitz,et al.  Finding zeros by multilevel subdivision techniques , 2002 .

[37]  C. Conley Isolated Invariant Sets and the Morse Index , 1978 .

[38]  Martin Rumpf,et al.  The computation of an unstable invariant set inside a cylinder containing a knotted flow , 2000 .

[39]  C. S. Hsu,et al.  GLOBAL ANALYSIS BY CELL MAPPING , 1992 .

[40]  C. Schütte Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules , 1999 .

[41]  M. Shub Global Stability of Dynamical Systems , 1986 .

[42]  Gary Froyland,et al.  Estimating physical invariant measures and space averages of dynamical systems indicators , 1997, Bulletin of the Australian Mathematical Society.

[43]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[44]  George Osipenko,et al.  Construction of attractors and filtrations , 1999 .

[45]  P. Deuflharda,et al.  Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains , 2000 .

[46]  O. Junge,et al.  Almost Invariant Sets in Chua's Circuit , 1997 .

[47]  Fern Y. Hunt,et al.  A Monte Carlo approach to the approximation of invariant measures , 1993 .

[48]  Michael Dellnitz,et al.  An adaptive subdivision technique for the approximation of attractors and invariant measures , 1998 .