Microchip capillary electrophoresis instrumentation for in situ analysis in the search for extraterrestrial life

The search for signs of life on extraterrestrial planetary bodies is among NASA's top priorities in Solar System exploration. The associated pursuit of organics and biomolecules as evidence of past or present life demands in situ investigations of planetary bodies for which sample return missions are neither practical nor affordable. These in situ studies require instrumentation capable of sensitive chemical analyses of complex mixtures including a broad range of organic molecules. Instrumentation must also be capable of autonomous operation aboard a robotically controlled vehicle that collects data and transmits it back to Earth. Microchip capillary electrophoresis (μCE) coupled to laser‐induced fluorescence (LIF) detection provides this required sensitivity and targets a wide range of relevant organics while offering low mass, volume, and power requirements. Thus, this technology would be ideally suited for in situ studies of astrobiology targets, such as Mars, Europa, Enceladus, and Titan. In this review, we introduce the characteristics of these planetary bodies that make them compelling destinations for extraterrestrial astrobiological studies, and the principal groups of organics of interest associated with each. And although the technology we describe here was first developed specifically for proposed studies of Mars, by summarizing its evolution over the past decade, we demonstrate how μCE‐LIF instrumentation has become an ideal candidate for missions of exploration to all of these nearby worlds in our Solar System.

[1]  Clark R. Chapman,et al.  Does Europa have a subsurface ocean? Evaluation of the geological evidence , 1999 .

[2]  Patrice Coll,et al.  Report and implications of the first observation of C4N2 in laboratory simulations of Titan’s atmosphere , 1999 .

[3]  Darwin R. Reyes,et al.  Micro total analysis systems. 1. Introduction, theory, and technology. , 2002, Analytical chemistry.

[4]  Joseph Wang,et al.  On‐chip enzymatic assays , 2002, Electrophoresis.

[5]  Sascha Kempf,et al.  Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring , 2006, Science.

[6]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[7]  A. Manz,et al.  Miniaturized total chemical analysis systems: A novel concept for chemical sensing , 1990 .

[8]  Philippe Lognonné,et al.  The present-day atmosphere of Mars: Where does it come from? , 2009 .

[9]  James P. Landers,et al.  Handbook of Capillary Electrophoresis , 1993 .

[10]  E. Friedmann,et al.  History of water on Mars: a biological perspective. , 1992, Advances in space research : the official journal of the Committee on Space Research.

[11]  C. Sotin,et al.  Episodic outgassing as the origin of atmospheric methane on Titan , 2005, Nature.

[12]  Marcio G von Muhlen,et al.  Teflon films for chemically-inert microfluidic valves and pumps. , 2008, Lab on a chip.

[13]  J L Bada,et al.  The origin of organic matter in the Martian meteorite ALH84001. , 1999, Advances in space research : the official journal of the Committee on Space Research.

[14]  Gabriel Tobie,et al.  Titan's internal structure inferred from a coupled thermal-orbital model , 2005 .

[15]  M. Malin,et al.  Evidence for recent groundwater seepage and surface runoff on Mars. , 2000, Science.

[16]  A. Weber Prebiotic formation of ‘energy-rich’ thioesters from glyceraldehyde and N-acetylcysteine , 2005, Origins of life and evolution of the biosphere.

[17]  Andreas Manz,et al.  Latest developments in micro total analysis systems. , 2010, Analytical chemistry.

[18]  D. Deamer,et al.  The first cell membranes. , 2002, Astrobiology.

[19]  Michael G. Roper,et al.  A fully integrated microfluidic genetic analysis system with sample-in–answer-out capability , 2006, Proceedings of the National Academy of Sciences.

[20]  R. Jaumann,et al.  Composition and Physical Properties of Enceladus' Surface , 2006, Science.

[21]  Gilles H. Peslherbe,et al.  A Theoretical Study of the Formation of the Aminoacetonitrile Precursor of Glycine on Icy Grain Mantles in the Interstellar Medium , 2008 .

[22]  M. Malin,et al.  Groundwater formation of martian valleys , 1999, Nature.

[23]  K. P. Hand,et al.  Empirical constraints on the salinity of the europan ocean and implications for a thin ice shell , 2007 .

[24]  Roger V. Yelle,et al.  Ion chemistry and N-containing molecules in Titan's upper atmosphere , 2007 .

[25]  P. Walde Surfactant Assemblies and their Various Possible Roles for the Origin(S) of Life , 2006, Origins of Life and Evolution of Biospheres.

[26]  Darwin R. Reyes,et al.  Micro total analysis systems. 2. Analytical standard operations and applications. , 2002, Analytical chemistry.

[27]  Frank Greer,et al.  Toward total automation of microfluidics for extraterrestial in situ analysis. , 2011, Analytical chemistry.

[28]  Fengjun Shang,et al.  Recent advances in miniaturisation – The role of microchip electrophoresis in clinical analysis , 2012, Electrophoresis.

[29]  Richard A Mathies,et al.  Multichannel capillary electrophoresis microdevice and instrumentation for in situ planetary analysis of organic molecules and biomarkers. , 2010, Analytical chemistry.

[30]  Martin Pumera,et al.  Analysis of nerve agents using capillary electrophoresis and laboratory-on-a-chip technology. , 2006, Journal of chromatography. A.

[31]  D. Morrison,et al.  Physical properties of the natural satellites , 1974 .

[32]  R. Mathies,et al.  Capillary electrophoresis analysis of organic amines and amino acids in saline and acidic samples using the Mars organic analyzer. , 2009, Astrobiology.

[33]  H. Becker,et al.  Polymer microfluidic devices. , 2002, Talanta.

[34]  W. Martin,et al.  On the origin of biochemistry at an alkaline hydrothermal vent , 2007, Philosophical Transactions of the Royal Society B: Biological Sciences.

[35]  G. Dieckmann,et al.  Antarctic Sea Ice--a Habitat for Extremophiles , 2002, Science.

[36]  S. Fagents Considerations for effusive cryovolcanism on Europa: The post‐Galileo perspective , 2003 .

[37]  Erik C Jensen,et al.  A digital microfluidic platform for the automation of quantitative biomolecular assays. , 2010, Lab on a chip.

[38]  P. D. Feldman,et al.  Detection of an oxygen atmosphere on Jupiter's moon Europa , 1995, Nature.

[39]  C. Chyba,et al.  Possible ecosystems and the search for life on Europa. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[40]  P. Willis,et al.  Monolithic photolithographically patterned Fluorocur PFPE membrane valves and pumps for in situ planetary exploration. , 2008, Lab on a chip.

[41]  Yongsheng Ding,et al.  Pulsed amperometric detection with poly(dimethylsiloxane)-fabricated capillary electrophoresis microchips for the determination of EPA priority pollutants. , 2006, The Analyst.

[42]  Richard A Mathies,et al.  Multichannel PCR-CE microdevice for genetic analysis. , 2006, Analytical chemistry.

[43]  Douglas J Jackson,et al.  Portable high-voltage power supply and electrochemical detection circuits for microchip capillary electrophoresis. , 2003, Analytical chemistry.

[44]  J. Lunine,et al.  Low temperature hydrolysis of laboratory tholins in ammonia-water solutions: Implications for prebiotic chemistry on Titan , 2009 .

[45]  William H. Grover,et al.  Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[46]  F. Palluconi,et al.  Martian North Pole Summer Temperatures: Dirty Water Ice , 1976, Science.

[47]  Christopher P McKay,et al.  The search for life in our Solar System and the implications for science and society , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[48]  N. Bogdanski,et al.  3D-Hot embossing of undercut structures: an approach to micro-zippers , 2004 .

[49]  C. Sagan,et al.  Amino acids derived from Titan tholins. , 1986, Icarus.

[50]  D. J. Harrison,et al.  Capillary electrophoresis and sample injection systems integrated on a planar glass chip , 1992 .

[51]  R. Mathies,et al.  Integrated microfluidic systems for high-performance genetic analysis. , 2009, Trends in biotechnology.

[52]  E. Verpoorte Microfluidic chips for clinical and forensic analysis , 2002, Electrophoresis.

[53]  A. Aikin,et al.  C4H2, HC3N and C2N2 in Titan's atmosphere , 1981, Nature.

[54]  A. Skelley,et al.  Application of the Mars Organic Analyzer to nucleobase and amine biomarker detection. , 2006, Astrobiology.

[55]  Bryan J. Travis,et al.  Enceladus: Present internal structure and differentiation by early and long-term radiogenic heating , 2007 .

[56]  G. Whitesides,et al.  Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). , 1998, Analytical chemistry.

[57]  G. Schubert,et al.  Europa's differentiated internal structure: inferences from two Galileo encounters. , 1997, Science.

[58]  Raymond E. Arvidson,et al.  A synthesis of Martian aqueous mineralogy after 1 Mars year of observations from the Mars Reconnaissance Orbiter , 2009 .

[59]  S. Larsen,et al.  The Mars Pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. , 1997, Science.

[60]  R. Kirk,et al.  The lakes of Titan , 2006, Nature.

[61]  R. E. Johnson,et al.  Sulfuric acid on Europa and the radiolytic sulfur cycle. , 1999, Science.

[62]  R. Mathies,et al.  Polycyclic aromatic hydrocarbon analysis with the Mars organic analyzer microchip capillary electrophoresis system. , 2009, Analytical chemistry.

[63]  Ana Fernández-la-Villa,et al.  New analytical portable instrument for microchip electrophoresis with electrochemical detection , 2010, Electrophoresis.

[64]  J L Bada,et al.  State-of-the-art instruments for detecting extraterrestrial life. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[65]  A. Hayes,et al.  An asymmetric distribution of lakes on Titan as a possible consequence of orbital forcing , 2009 .

[66]  S. Abbas,et al.  Amino acid synthesis in Europa's subsurface environment , 2008, International Journal of Astrobiology.

[67]  J. K. Crowley,et al.  Salts on Europa's surface detected by Galileo's near infrared mapping spectrometer. The NIMS Team. , 1998, Science.

[68]  L. Horn,et al.  Infrared observations of the saturnian system from voyager 1. , 1981, Science.

[69]  Á. Somogyi,et al.  Titan's primordial soup: formation of amino acids via low-temperature hydrolysis of tholins. , 2009, Astrobiology.

[70]  Richard A Mathies,et al.  An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing. , 2005, Lab on a chip.

[71]  R N Zare,et al.  Identification of Complex Aromatic Molecules in Individual Interplanetary Dust Particles , 1993, Science.

[72]  R. Mathies,et al.  Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: Aldehydes and ketones , 2010, Electrophoresis.

[73]  Christopher Berg,et al.  Lab‐on‐a‐robot: Integrated microchip CE, power supply, electrochemical detector, wireless unit, and mobile platform , 2008, Electrophoresis.

[74]  Rosaly M. C. Lopes,et al.  Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot , 2006, Science.

[75]  E. Shock,et al.  Abiotic synthesis of polycyclic aromatic hydrocarbons on Mars , 1999 .

[76]  Richard A Mathies,et al.  Integrated sample cleanup-capillary electrophoresis microchip for high-performance short tandem repeat genetic analysis. , 2009, Analytical chemistry.

[77]  P. Mahaffy Exploration of the Habitability of Mars: Development of Analytical Protocols for Measurement of Organic Carbon on the 2009 Mars Science Laboratory , 2008 .

[78]  S. Kang,et al.  Portable capillary electrophoresis system for identification of cattle breeds based on DNA mobility , 2010, Electrophoresis.

[79]  R. Kahn The evolution of CO2 on Mars , 1985 .

[80]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[81]  William H. Grover,et al.  Monolithic membrane valves and diaphragm pumps for practical large-scale integration into glass microfluidic devices , 2003 .

[82]  K. Pang,et al.  The E ring of Saturn and satellite Enceladus , 1984 .

[83]  Olivier Grasset,et al.  On the internal structure and dynamics of Titan , 1998 .

[84]  Yong-Kweon Kim,et al.  Integration of on‐column immobilized enzyme reactor in microchip electrophoresis , 2003, Electrophoresis.

[85]  Charles S Henry,et al.  Recent progress in the development of muTAS for clinical analysis. , 2003, The Analyst.

[86]  Harrison Dj,et al.  Chemiluminescence detection in integrated post‐separation reactors for microchip‐based capillary electrophoresis and affinity electrophoresis , 1998 .

[87]  Martin Pumera,et al.  Analysis of explosives via microchip electrophoresis and conventional capillary electrophoresis: A review , 2006, Electrophoresis.

[88]  G. Seong,et al.  Fabrication of microchambers defined by photopolymerized hydrogels and weirs within microfluidic systems: application to DNA hybridization. , 2002, Analytical chemistry.

[89]  G. Whitesides,et al.  The Relative Rates of Thiol–Thioester Exchange and Hydrolysis for Alkyl and Aryl Thioalkanoates in Water , 2011, Origins of Life and Evolution of Biospheres.

[90]  Lucas Blanes,et al.  Recent developments in instrumentation for capillary electrophoresis and microchip‐capillary electrophoresis , 2010, Electrophoresis.

[91]  Paul F. McMillan,et al.  New experimental constraints on the composition and structure of tholins , 2008 .

[92]  Yan Liu,et al.  Interfacing microchip electrophoresis to a growth tube particle collector for semicontinuous monitoring of aerosol composition. , 2009, Analytical chemistry.

[93]  W. Ip,et al.  Cassini Ion and Neutral Mass Spectrometer: Enceladus Plume Composition and Structure , 2006, Science.

[94]  P. Willis,et al.  Titan tholins: simulating Titan organic chemistry in the Cassini-Huygens era. , 2012, Chemical reviews.

[95]  Chris McKay,et al.  What Is Life—and How Do We Search for It in Other Worlds? , 2004, PLoS biology.

[96]  John A. Baross,et al.  Planets and life : the emerging science of astrobiology , 2007 .

[97]  W. L. Davis,et al.  Duration of liquid water habitats on early Mars. , 1991, Icarus.

[98]  H. Gröger Catalytic enantioselective Strecker reactions and analogous syntheses. , 2003, Chemical reviews.

[99]  R. Mathies,et al.  Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: carboxylic acids. , 2011, Astrobiology.

[100]  Jungkyu Kim,et al.  Microvalve Enabled Digital Microfluidic Systems for High-Performance Biochemical and Genetic Analysis , 2010, JALA.

[101]  Sam Bae,et al.  Monolithic Teflon membrane valves and pumps for harsh chemical and low-temperature use. , 2007, Lab on a chip.

[102]  Stanley L. Miller,et al.  Production of Some Organic Compounds under Possible Primitive Earth Conditions1 , 1955 .

[103]  John A. Baross,et al.  Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life , 1985, Origins of life and evolution of the biosphere.

[104]  Masaru Kato,et al.  Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. , 2003, Analytical chemistry.

[105]  D. J. Harrison,et al.  Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip , 1993, Science.

[106]  James P Landers,et al.  Dynamic solid phase DNA extraction and PCR amplification in polyester-toner based microchip. , 2011, Analytical chemistry.

[107]  J. Beck,et al.  Isotopic evidence for a terrestrial source of organic compounds found in martian meteorites Allan Hills 84001 and Elephant Moraine 79001. , 1998, Science.

[108]  A. Skelley,et al.  Organic amine biomarker detection in the Yungay region of the Atacama Desert with the Urey instrument , 2007 .

[109]  M. Sephton,et al.  Organic compounds in carbonaceous meteorites. , 2002, Natural product reports.

[110]  R. Mathies,et al.  Enhanced amine and amino acid analysis using Pacific Blue and the Mars Organic Analyzer microchip capillary electrophoresis system. , 2009, Analytical chemistry.

[111]  William H. Grover,et al.  Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. , 2006, Lab on a chip.

[112]  S. Hensley,et al.  Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds , 2008, Science.

[113]  Bruce Block,et al.  Ion Neutral Mass Spectrometer Results from the First Flyby of Titan , 2005, Science.

[114]  C. Russell,et al.  Identification of a Dynamic Atmosphere at Enceladus with the Cassini Magnetometer , 2006, Science.

[115]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[116]  B. R. Tufts,et al.  Evidence for a subsurface ocean on Europa , 1998, Nature.

[117]  Andreas Manz,et al.  Micro total analysis systems: latest achievements. , 2008, Analytical chemistry.

[118]  Epilogue: The Origins of Life in the Solar System and Future Exploration , 2007 .

[119]  F. Raulin,et al.  Experimental simulation of Titan's organic chemistry at low temperature. , 1995, Planetary and space science.

[120]  C. Russell,et al.  Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. , 2000, Science.

[121]  P. Veltink,et al.  The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications , 1997 .

[122]  G. Whitesides,et al.  Fabrication of microfluidic systems in poly(dimethylsiloxane) , 2000, Electrophoresis.

[123]  Tae Seok Seo,et al.  Integrated capture, concentration, polymerase chain reaction, and capillary electrophoretic analysis of pathogens on a chip. , 2009, Analytical chemistry.