Local Variational Feature-Based Similarity Models for Recommending Top-N New Items

The top-N recommendation problem has been studied extensively. Item-based collaborative filtering recommendation algorithms show promising results for the problem. They predict a user’s preferences by estimating similarities between a target and user-rated items. Top-N recommendation remains a challenging task in scenarios where there is a lack of preference history for new items. Feature-based Similarity Models (FSMs) address this particular problem by extending item-based collaborative filtering by estimating similarity functions of item features. The quality of the estimated similarity function determines the accuracy of the recommendation. However, existing FSMs only estimate global similarity functions; i.e., they estimate using preference information across all users. Moreover, the estimated similarity functions are linear; hence, they may fail to capture the complex structure underlying item features. In this article, we propose to improve FSMs by estimating local similarity functions, where each function is estimated for a subset of like-minded users. To capture global preference patterns, we extend the global similarity function from linear to nonlinear, based on the effectiveness of variational autoencoders. We propose a Bayesian generative model, called the Local Variational Feature-based Similarity Model, to encapsulate local and global similarity functions. We present a variational Expectation Minimization algorithm for efficient approximate inference. Extensive experiments on a large number of real-world datasets demonstrate the effectiveness of our proposed model.

[1]  Chong Wang,et al.  Collaborative topic modeling for recommending scientific articles , 2011, KDD.

[2]  Tat-Seng Chua,et al.  Attentive Aspect Modeling for Review-Aware Recommendation , 2018, ACM Trans. Inf. Syst..

[3]  Deepak Agarwal,et al.  Regression-based latent factor models , 2009, KDD.

[4]  Xu Chen,et al.  Learning to Rank Features for Recommendation over Multiple Categories , 2016, SIGIR.

[5]  Ingrid Zukerman,et al.  Personalised rating prediction for new users using latent factor models , 2011, HT '11.

[6]  Michael J. Pazzani,et al.  A hybrid user model for news story classification , 1999 .

[7]  Max Welling,et al.  Bayesian Matrix Factorization with Side Information and Dirichlet Process Mixtures , 2010, AAAI.

[8]  Ali Farhadi,et al.  Unsupervised Deep Embedding for Clustering Analysis , 2015, ICML.

[9]  Mohan S. Kankanhalli,et al.  Aspect-Aware Latent Factor Model: Rating Prediction with Ratings and Reviews , 2018, WWW.

[10]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[11]  Lei Shi,et al.  Local Representative-Based Matrix Factorization for Cold-Start Recommendation , 2017, ACM Trans. Inf. Syst..

[12]  Zi Huang,et al.  Joint Modeling of User Check-in Behaviors for Real-time Point-of-Interest Recommendation , 2016, ACM Trans. Inf. Syst..

[13]  Jure Leskovec,et al.  Hidden factors and hidden topics: understanding rating dimensions with review text , 2013, RecSys.

[14]  Fabio Aiolli A Preliminary Study on a Recommender System for the Million Songs Dataset Challenge , 2013, IIR.

[15]  Yong Yu,et al.  SVDFeature: a toolkit for feature-based collaborative filtering , 2012, J. Mach. Learn. Res..

[16]  Yi Zhang,et al.  Efficient bayesian hierarchical user modeling for recommendation system , 2007, SIGIR.

[17]  Lin Wu,et al.  Iterative Views Agreement: An Iterative Low-Rank Based Structured Optimization Method to Multi-View Spectral Clustering , 2016, IJCAI.

[18]  Ludovic Denoyer,et al.  Representation Learning for cold-start recommendation , 2014, ICLR.

[19]  James She,et al.  Collaborative Variational Autoencoder for Recommender Systems , 2017, KDD.

[20]  Pablo Gervás,et al.  A User Model Based on Content Analysis for the Intelligent Personalization of a News Service , 2001, User Modeling.

[21]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[22]  Jun Wang,et al.  Deep Learning over Multi-field Categorical Data - - A Case Study on User Response Prediction , 2016, ECIR.

[23]  Michael R. Lyu,et al.  Improving Recommender Systems by Incorporating Social Contextual Information , 2011, TOIS.

[24]  Yiqun Liu,et al.  An Efficient Adaptive Transfer Neural Network for Social-aware Recommendation , 2019, SIGIR.

[25]  Lei Zheng,et al.  Joint Deep Modeling of Users and Items Using Reviews for Recommendation , 2017, WSDM.

[26]  Yuexin Wu,et al.  We know what you want to buy: a demographic-based system for product recommendation on microblogs , 2014, KDD.

[27]  Amin Mantrach,et al.  Item cold-start recommendations: learning local collective embeddings , 2014, RecSys '14.

[28]  Ye Wang,et al.  Improving Content-based and Hybrid Music Recommendation using Deep Learning , 2014, ACM Multimedia.

[29]  Hayder Radha,et al.  Cold-Start Recommendation with Provable Guarantees: A Decoupled Approach , 2016, IEEE Transactions on Knowledge and Data Engineering.

[30]  Samy Bengio,et al.  Local collaborative ranking , 2014, WWW.

[31]  Grigorios Tsoumakas,et al.  PersoNews: A Personalized News Reader Enhanced by Machine Learning and Semantic Filtering , 2006, OTM Conferences.

[32]  Li Chen,et al.  Recommender systems based on user reviews: the state of the art , 2015, User Modeling and User-Adapted Interaction.

[33]  Yehuda Koren,et al.  Factorization meets the neighborhood: a multifaceted collaborative filtering model , 2008, KDD.

[34]  Yiqun Liu,et al.  Rating-Boosted Latent Topics: Understanding Users and Items with Ratings and Reviews , 2016, IJCAI.

[35]  VincentPascal,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010 .

[36]  Yi Fang,et al.  Neural Semantic Personalized Ranking for item cold-start recommendation , 2017, Information Retrieval Journal.

[37]  Wu-Jun Li,et al.  Collaborative Topic Regression with Social Regularization for Tag Recommendation , 2013, IJCAI.

[38]  Evangelia Christakopoulou,et al.  Local Item-Item Models For Top-N Recommendation , 2016, RecSys.

[39]  George Karypis,et al.  SLIM: Sparse Linear Methods for Top-N Recommender Systems , 2011, 2011 IEEE 11th International Conference on Data Mining.

[40]  Xiaoling Wang,et al.  Bayesian Probabilistic Multi-Topic Matrix Factorization for Rating Prediction , 2016, IJCAI.

[41]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.

[42]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[43]  Ling Chen,et al.  LCARS , 2014, ACM Trans. Inf. Syst..

[44]  Chao Liu,et al.  Wisdom of the better few: cold start recommendation via representative based rating elicitation , 2011, RecSys '11.

[45]  George Karypis,et al.  FISM: factored item similarity models for top-N recommender systems , 2013, KDD.

[46]  Tomás Horváth,et al.  Opinion-Driven Matrix Factorization for Rating Prediction , 2013, UMAP.

[47]  Tat-Seng Chua,et al.  Improving Implicit Recommender Systems with View Data , 2018, IJCAI.

[48]  Bing Liu,et al.  Aspect Based Recommendations: Recommending Items with the Most Valuable Aspects Based on User Reviews , 2017, KDD.

[49]  Laks V. S. Lakshmanan,et al.  HeteroMF: recommendation in heterogeneous information networks using context dependent factor models , 2013, WWW.

[50]  Roberto Turrin,et al.  Performance of recommender algorithms on top-n recommendation tasks , 2010, RecSys '10.

[51]  Guillermo Sapiro,et al.  Kernelized Probabilistic Matrix Factorization: Exploiting Graphs and Side Information , 2012, SDM.

[52]  Chen Gao,et al.  Neural Multi-task Recommendation from Multi-behavior Data , 2018, 2019 IEEE 35th International Conference on Data Engineering (ICDE).

[53]  Yi-Hsuan Yang,et al.  Addressing Cold Start for Next-song Recommendation , 2016, RecSys.

[54]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[55]  Joze Rugelj,et al.  Improving matrix factorization recommendations for examples in cold start , 2015, Expert Syst. Appl..

[56]  Mohit Sharma,et al.  Feature-based factorized Bilinear Similarity Model for Cold-Start Top-n Item Recommendation , 2019, SDM.

[57]  Preslav Nakov,et al.  A non-IID Framework for Collaborative Filtering with Restricted Boltzmann Machines , 2013, ICML.

[58]  Dit-Yan Yeung,et al.  Collaborative Deep Learning for Recommender Systems , 2014, KDD.

[59]  Ian Soboroff. Charles Nicholas Combining Content and Collaboration in Text Filtering , 1999 .

[60]  Srujana Merugu,et al.  A scalable collaborative filtering framework based on co-clustering , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[61]  George Karypis,et al.  User-Specific Feature-Based Similarity Models for Top-n Recommendation of New Items , 2015, ACM Trans. Intell. Syst. Technol..

[62]  Tat-Seng Chua,et al.  Neural Factorization Machines for Sparse Predictive Analytics , 2017, SIGIR.

[63]  Maksims Volkovs,et al.  Effective Latent Models for Binary Feedback in Recommender Systems , 2015, SIGIR.

[64]  Min Xie,et al.  CCCF: Improving Collaborative Filtering via Scalable User-Item Co-Clustering , 2016, WSDM.

[65]  Rossano Schifanella,et al.  Cold-start news recommendation with domain-dependent browse graph , 2014, RecSys '14.

[66]  Dong Yu,et al.  Deep Crossing: Web-Scale Modeling without Manually Crafted Combinatorial Features , 2016, KDD.

[67]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[68]  Benjamin Schrauwen,et al.  Deep content-based music recommendation , 2013, NIPS.

[69]  Francesco Ricci,et al.  Active learning strategies for rating elicitation in collaborative filtering , 2013, ACM Trans. Intell. Syst. Technol..

[70]  Mejari Kumar,et al.  Connecting Social Media to E-Commerce: Cold-Start Product Recommendation using Microblogging Information , 2018 .

[71]  Yoshua Bengio,et al.  Deep Sparse Rectifier Neural Networks , 2011, AISTATS.

[72]  Wei Chu,et al.  Information Services]: Web-based services , 2022 .

[73]  Hayder Radha,et al.  Cold-Start Item and User Recommendation with Decoupled Completion and Transduction , 2015, RecSys.

[74]  Deepak Agarwal,et al.  Generalizing matrix factorization through flexible regression priors , 2011, RecSys '11.

[75]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[76]  Fabio Crestani,et al.  Personalized Context-Aware Point of Interest Recommendation , 2018, ACM Trans. Inf. Syst..

[77]  Evangelia Christakopoulou,et al.  Local Latent Space Models for Top-N Recommendation , 2018, KDD.

[78]  Guokun Lai,et al.  Explicit factor models for explainable recommendation based on phrase-level sentiment analysis , 2014, SIGIR.

[79]  Donghan Yu,et al.  Multi-Site User Behavior Modeling and Its Application in Video Recommendation , 2017, IEEE Transactions on Knowledge and Data Engineering.

[80]  Qiang Yang,et al.  One-Class Collaborative Filtering , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[81]  Sheng Li,et al.  Deep Collaborative Filtering via Marginalized Denoising Auto-encoder , 2015, CIKM.

[82]  Max Welling,et al.  Auto-Encoding Variational Bayes , 2013, ICLR.

[83]  Mehrnoush Shamsfard,et al.  Matrix Factorization with Explicit Trust and Distrust Side Information for Improved Social Recommendation , 2014, TOIS.

[84]  Lin Wu,et al.  Effective Multi-Query Expansions: Collaborative Deep Networks for Robust Landmark Retrieval , 2017, IEEE Transactions on Image Processing.

[85]  Chun Chen,et al.  An exploration of improving collaborative recommender systems via user-item subgroups , 2012, WWW.

[86]  Steffen Rendle,et al.  Factorization Machines , 2010, 2010 IEEE International Conference on Data Mining.

[87]  Heng-Tze Cheng,et al.  Wide & Deep Learning for Recommender Systems , 2016, DLRS@RecSys.

[88]  Samy Bengio,et al.  LLORMA: Local Low-Rank Matrix Approximation , 2016, J. Mach. Learn. Res..

[89]  Geoffrey J. Gordon,et al.  Relational learning via collective matrix factorization , 2008, KDD.

[90]  Shi Feng,et al.  Localized matrix factorization for recommendation based on matrix block diagonal forms , 2013, WWW.

[91]  Lars Schmidt-Thieme,et al.  Learning Attribute-to-Feature Mappings for Cold-Start Recommendations , 2010, 2010 IEEE International Conference on Data Mining.

[92]  David M. Pennock,et al.  Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments , 2001, UAI.

[93]  John R. Anderson,et al.  Beyond Globally Optimal: Focused Learning for Improved Recommendations , 2017, WWW.