Intelligent feedforward control and payload estimation for a two-link robotic manipulator

Conventional model-based computed torque control fails to produce a good trajectory tracking performance in the presence of payload uncertainty and modeling error. The challenge is to provide accurate dynamics information to the controller. A new control architecture that incorporates a neural-network, fuzzy logic and a simple proportional-derivative (PD) controller is proposed to control an articulated robot carrying a variable payload. An off-line trained feedforward (multilayer) neural network takes payload mass estimates from a fuzzy-logic mass estimator as one of the inputs to represent the inverse dynamics of the articulated robot. The effectiveness of the proposed architecture is demonstrated by experiment on a two-link planar manipulator with changing payload mass. Experimental results show that this control architecture achieves excellent tracking performance in the presence of payload uncertainty.