Ran-dependent docking of importin-β to RanBP2/Nup358 filaments is essential for protein import and cell viability

RanBP2 captures RanGTP–importin-β complexes at cytoplasmic fibrils to ensure adequate classical NLS–mediated protein import and cell viability.

[1]  Y. Chook,et al.  Nuclear import by karyopherin-βs: recognition and inhibition. , 2011, Biochimica et biophysica acta.

[2]  L. Galluzzi,et al.  Mitotic catastrophe: a mechanism for avoiding genomic instability , 2011, Nature Reviews Molecular Cell Biology.

[3]  D. Baker,et al.  Cdc20 hypomorphic mice fail to counteract de novo synthesis of cyclin B1 in mitosis , 2010, The Journal of cell biology.

[4]  M. Rout,et al.  The nuclear pore complex and nuclear transport. , 2010, Cold Spring Harbor perspectives in biology.

[5]  M. Niepel,et al.  The nuclear pore complex: bridging nuclear transport and gene regulation , 2010, Nature Reviews Molecular Cell Biology.

[6]  R. Wozniak,et al.  Nuclear transport and the mitotic apparatus: an evolving relationship , 2010, Cellular and Molecular Life Sciences.

[7]  L. J. Terry,et al.  Flexible Gates: Dynamic Topologies and Functions for FG Nucleoporins in Nucleocytoplasmic Transport , 2009, Eukaryotic Cell.

[8]  J. Hauber,et al.  The nuclear pore component Nup358 promotes transportin-dependent nuclear import , 2009, Journal of Cell Science.

[9]  Shanshan Zhu,et al.  Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1. , 2009, Molecular cell.

[10]  J. V. van Deursen,et al.  BubR1 N terminus acts as a soluble inhibitor of cyclin B degradation by APC/C(Cdc20) in interphase. , 2009, Developmental cell.

[11]  F. Melchior,et al.  The Nup358-RanGAP complex is required for efficient importin alpha/beta-dependent nuclear import. , 2008, Molecular biology of the cell.

[12]  K. Shuai,et al.  Resolution of Sister Centromeres Requires RanBP2-Mediated SUMOylation of Topoisomerase IIα , 2008, Cell.

[13]  M. Matunis,et al.  SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. , 2008, Molecules and Cells.

[14]  M. Dasso,et al.  The nucleoporin Nup358 associates with and regulates interphase microtubules , 2008, FEBS letters.

[15]  D. Baker,et al.  Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis , 2007, The Journal of cell biology.

[16]  M. Dasso Ran at kinetochores. , 2006, Biochemical Society transactions.

[17]  R. Kehlenbach,et al.  Nup214 Is Required for CRM1-Dependent Nuclear Protein Export In Vivo , 2006, Molecular and Cellular Biology.

[18]  P. Sieving,et al.  RanBP2 Modulates Cox11 and Hexokinase I Activities and Haploinsufficiency of RanBP2 Causes Deficits in Glucose Metabolism , 2006, PLoS genetics.

[19]  X. Wang,et al.  Harnessing a High Cargo-Capacity Transposon for Genetic Applications in Vertebrates , 2006, PLoS genetics.

[20]  M. Dasso,et al.  Ran-GTP regulates Kinetochore Attachment in Somatic Cells , 2005, Cell cycle.

[21]  David Reverter,et al.  Insights into E3 ligase activity revealed by a SUMO–RanGAP1–Ubc9–Nup358 complex , 2005, Nature.

[22]  T. Karpova,et al.  Crm1 is a mitotic effector of Ran-GTP in somatic cells , 2005, Nature Cell Biology.

[23]  Y. Yoneda,et al.  Zinc finger domain of Snail functions as a nuclear localization signal for importin β‐mediated nuclear import pathway , 2005, Genes to cells : devoted to molecular & cellular mechanisms.

[24]  M. Fornerod,et al.  Supraphysiological nuclear export signals bind CRM1 independently of RanGTP and arrest at Nup358 , 2004, The EMBO journal.

[25]  Guido Kroemer,et al.  Cell death by mitotic catastrophe: a molecular definition , 2004, Oncogene.

[26]  M. Dasso,et al.  The RanGAP1-RanBP2 Complex Is Essential for Microtubule-Kinetochore Interactions In Vivo , 2004, Current Biology.

[27]  Helen Pickersgill,et al.  Nup358/RanBP2 Attaches to the Nuclear Pore Complex via Association with Nup88 and Nup214/CAN and Plays a Supporting Role in CRM1-Mediated Nuclear Protein Export , 2004, Molecular and Cellular Biology.

[28]  P. Bork,et al.  RanBP2/Nup358 Provides a Major Binding Site for NXF1-p15 Dimers at the Nuclear Pore Complex and Functions in Nuclear mRNA Export , 2004, Molecular and Cellular Biology.

[29]  J. B. Rattner,et al.  Nup358 integrates nuclear envelope breakdown with kinetochore assembly , 2003, The Journal of cell biology.

[30]  H. Saitoh,et al.  Enzymes of the SUMO Modification Pathway Localize to Filaments of the Nuclear Pore Complex , 2002, Molecular and Cellular Biology.

[31]  M. Dasso The Ran GTPase: Theme and Variations , 2002, Current Biology.

[32]  M. Fornerod,et al.  The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import , 2002, The Journal of cell biology.

[33]  A. Dejean,et al.  The Nucleoporin RanBP2 Has SUMO1 E3 Ligase Activity , 2002, Cell.

[34]  Stephen S. Taylor,et al.  Kinetochore localisation and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells. , 2001, Journal of cell science.

[35]  A. Berns,et al.  Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. V. van Deursen,et al.  Disruption of the FG nucleoporin NUP98 causes selective changes in nuclear pore complex stoichiometry and function , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[37]  D. Görlich,et al.  Different structural and kinetic requirements for the interaction of Ran with the Ran-binding domains from RanBP2 and importin-beta. , 2000, Biochemistry.

[38]  P. Sorger,et al.  Chromosome Missegregation and Apoptosis in Mice Lacking the Mitotic Checkpoint Protein Mad2 , 2000, Cell.

[39]  J. Thorner,et al.  Random Mutagenesis and Functional Analysis of the Ran-binding Protein, RanBP1* , 2000, The Journal of Biological Chemistry.

[40]  R. Roepman,et al.  The Zinc Finger Cluster Domain of RanBP2 Is a Specific Docking Site for the Nuclear Export Factor, Exportin-1* , 1999, The Journal of Biological Chemistry.

[41]  G. Blobel,et al.  GTP Hydrolysis Links Initiation and Termination of Nuclear Import on the Nucleoporin Nup358* , 1999, The Journal of Biological Chemistry.

[42]  M. Cleary,et al.  CREB Binding Protein Interacts with Nucleoporin-Specific FG Repeats That Activate Transcription and Mediate NUP98-HOXA9 Oncogenicity , 1999, Molecular and Cellular Biology.

[43]  J. Hanover,et al.  Reconstitution of HIV-1 rev nuclear export: independent requirements for nuclear import and export. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  G. Blobel,et al.  SUMO-1 Modification and Its Role in Targeting the Ran GTPase-activating Protein, RanGAP1, to the Nuclear Pore Complex , 1998, The Journal of cell biology.

[45]  F. Melchior,et al.  RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. , 1997, Molecular biology of the cell.

[46]  F. Melchior,et al.  A Small Ubiquitin-Related Polypeptide Involved in Targeting RanGAP1 to Nuclear Pore Complex Protein RanBP2 , 1997, Cell.

[47]  B. Burke,et al.  Targeting and function in mRNA export of nuclear pore complex protein Nup153 , 1996, The Journal of cell biology.

[48]  Tatsuya Seki,et al.  A giant nucleopore protein that binds Ran/TC4 , 1995, Nature.

[49]  G. Blobel,et al.  Nup358, a Cytoplasmically Exposed Nucleoporin with Peptide Repeats, Ran-GTP Binding Sites, Zinc Fingers, a Cyclophilin A Homologous Domain, and a Leucine-rich Region (*) , 1995, The Journal of Biological Chemistry.