Parameterized Algorithmics and Computational Experiments for Finding 2-Clubs

Given an undirected graph G=(V,E) and an integer l≥1, the NP-hard 2-Club problem asks for a vertex set S⊆V of size at least l such that the subgraph induced by S has diameter at most two. In this work, we extend previous parameterized complexity studies for 2-Club. On the positive side, we give polynomial kernels for the parameters "feedback edge set size of G" and "size of a cluster editing set of G" and present a direct combinatorial algorithm for the parameter "treewidth of G". On the negative side, we first show that unless NP⊆coNP/poly, 2-Club does not admit a polynomial kernel with respect to the "size of a vertex cover of G". Next, we show that, under the strong exponential time hypothesis, a previous O*(2|V|−l) search tree algorithm [Schafer et al., Optim. Lett. 2012] cannot be improved and that, unless NP⊆coNP/poly, there is no polynomial kernel for the dual parameter |V|−l. Finally, we show that, in spite of this lower bound, the search tree algorithm for the dual parameter |V|−l can be tuned into an efficient exact algorithm for 2-Club that substantially outperforms previous implementations.

[1]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[2]  Christian Komusiewicz,et al.  New Races in Parameterized Algorithmics , 2012, MFCS.

[3]  Sergiy Butenko,et al.  Novel Approaches for Analyzing Biological Networks , 2005, J. Comb. Optim..

[4]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[5]  Russell Impagliazzo,et al.  Which Problems Have Strongly Exponential Complexity? , 2001, J. Comput. Syst. Sci..

[6]  Maria Teresa Almeida,et al.  Integer models and upper bounds for the 3-club problem , 2012, Networks.

[7]  R. J. Mokken,et al.  Cliques, clubs and clans , 1979 .

[8]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[9]  Christian Komusiewicz,et al.  On Structural Parameterizations for the 2-Club Problem , 2013, SOFSEM.

[10]  David A. Bader,et al.  Graph Partitioning and Graph Clustering, 10th DIMACS Implementation Challenge Workshop, Georgia Institute of Technology, Atlanta, GA, USA, February 13-14, 2012. Proceedings , 2013, Graph Partitioning and Graph Clustering.

[11]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[12]  Anders Yeo,et al.  Kernel bounds for disjoint cycles and disjoint paths , 2009, Theor. Comput. Sci..

[13]  Petr A. Golovach,et al.  Finding clubs in graph classes , 2014, Discret. Appl. Math..

[14]  R. Alba A graph‐theoretic definition of a sociometric clique† , 1973 .

[15]  Nasrullah Memon,et al.  Structural Analysis and Mathematical Methods for Destabilizing Terrorist Networks Using Investigative Data Mining , 2006, ADMA.

[16]  Jörg Flum,et al.  Parameterized Complexity Theory (Texts in Theoretical Computer Science. An EATCS Series) , 2006 .

[17]  Stephen B. Seidman,et al.  A graph‐theoretic generalization of the clique concept* , 1978 .

[18]  Srinivas Pasupuleti,et al.  Detection of Protein Complexes in Protein Interaction Networks Using n-Clubs , 2008, EvoBIO.

[19]  Gilbert Laporte,et al.  An exact algorithm for the maximum k-club problem in an undirected graph , 1999, Eur. J. Oper. Res..

[20]  Maria Teresa Almeida,et al.  Upper bounds and heuristics for the 2-club problem , 2011, Eur. J. Oper. Res..

[21]  Stefan Kratsch,et al.  Cross-Composition: A New Technique for Kernelization Lower Bounds , 2011, STACS.

[22]  Michel Gendreau,et al.  Solving the maximum clique problem using a tabu search approach , 1993, Ann. Oper. Res..

[23]  Yuichi Asahiro,et al.  Approximating Maximum Diameter-Bounded Subgraphs , 2010, LATIN.

[24]  Maw-Shang Chang,et al.  Finding large $$k$$-clubs in undirected graphs , 2013, Computing.

[25]  Yijia Chen,et al.  Lower Bounds for Kernelizations and Other Preprocessing Procedures , 2010, Theory of Computing Systems.

[26]  Alexander Schäfer,et al.  Exact algorithms for s-club finding and related problems , 2009 .

[27]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[28]  Dániel Marx,et al.  Lower bounds based on the Exponential Time Hypothesis , 2011, Bull. EATCS.

[29]  Gilbert Laporte,et al.  Heuristics for finding k-clubs in an undirected graph , 2000, Comput. Oper. Res..

[30]  Hong Liu,et al.  On Editing Graphs into 2-Club Clusters , 2012, FAW-AAIM.

[31]  Balabhaskar Balasundaram,et al.  On inclusionwise maximal and maximum cardinality k-clubs in graphs , 2012, Discret. Optim..

[32]  David P. Williamson,et al.  Deterministic pivoting algorithms for constrained ranking and clustering problems , 2007, SODA '07.

[33]  Christian Komusiewicz,et al.  Parameterized computational complexity of finding small-diameter subgraphs , 2012, Optim. Lett..