An extended hypoplastic constitutive model considering particle breakage for granular material

[1]  Wei Wu,et al.  A Hypoplastic Constitutive Model for Granular Materials with Particle Breakage , 2023, International Journal of Geomechanics.

[2]  D. Liao,et al.  Hypoplastic Modeling of Anisotropic Sand Behavior Accounting for Rotation of Principal Stress Direction , 2022, Journal of Engineering Mechanics.

[3]  G. Habibagahi,et al.  A rational hypoplastic constitutive equation for anisotropic granular materials incorporating the microstructure tensor , 2022, Acta Geotechnica.

[4]  M. Hyodo,et al.  Compression and Deformation Characteristics of Hydrate-Bearing Sediments under High Effective Confining Pressure , 2022, International Journal of Geomechanics.

[5]  Guoxing Chen,et al.  A fully coupled flow deformation model for seismic site response analyses of liquefiable marine sediments , 2022, Ocean Engineering.

[6]  D. Liao,et al.  Hypoplastic model for sand under multidirectional shearing conditions considering fabric change effect , 2022, Soil Dynamics and Earthquake Engineering.

[7]  M. Hyodo,et al.  Experimental Investigation of the Mechanical Properties of Methane Hydrate–Bearing Sediments under High Effective Confining Pressure , 2022, Journal of Geotechnical and Geoenvironmental Engineering.

[8]  T. Janda,et al.  Automated calibration of advanced soil constitutive models. Part II: hypoplastic clay and modified Cam-Clay , 2022, Acta Geotechnica.

[9]  C. Desai,et al.  New Simple Breakage Index for Crushable Granular Soils , 2021 .

[10]  D. Sheng,et al.  Particle breakage of granular soils: changing critical state line and constitutive modelling , 2021, Acta Geotechnica.

[11]  D. Mašín,et al.  Evaluation of hypoplastic model for soft clays by modelling of Nicoll highway case history , 2021 .

[12]  Z. X. Yang,et al.  Hypoplastic modeling of anisotropic sand behavior accounting for fabric evolution under monotonic and cyclic loading , 2021, Acta Geotechnica.

[13]  Nicola Sciarra,et al.  Calibration of a hypoplastic model using genetic algorithms , 2021, Acta Geotechnica.

[14]  Haruyuki Yamamoto,et al.  Experimental investigation on mechanical behavior and particle crushing of calcareous sand retrieved from South China Sea , 2021, Engineering Geology.

[15]  W. Wu On a simple critical state model for sand , 2020, Numerical Models in Geomechanics.

[16]  Shun Wang,et al.  Validation of a simple hypoplastic constitutive model for overconsolidated clays , 2020, Acta Geotechnica.

[17]  Z. Yin,et al.  Micro-mechanical analysis of caisson foundation in sand using DEM: Particle breakage effect , 2020 .

[18]  Shun Wang,et al.  A simple hypoplastic model for overconsolidated clays , 2020, Acta Geotechnica.

[19]  Zhongxuan Yang,et al.  A hypoplastic model for granular soils incorporating anisotropic critical state theory , 2020, International Journal for Numerical and Analytical Methods in Geomechanics.

[20]  Mingxing Luo,et al.  Dilatancy and Critical State of Calcareous Sand Incorporating Particle Breakage , 2020 .

[21]  Gang Wang,et al.  Particle Breakage and Deformation Behavior of Carbonate Sand under Drained and Undrained Triaxial Compression , 2020 .

[22]  J. Cui,et al.  Influence of Load Mode on Particle Crushing Characteristics of Silica Sand at High Stresses , 2020 .

[23]  P. Hicher,et al.  Modeling the effect of wetting on the mechanical behavior of crushable granular materials , 2020 .

[24]  Huabei Liu,et al.  Particle Breakage of Calcareous Sand and Its Correlation with Input Energy , 2020 .

[25]  Chao Zhang,et al.  Mechanical behavior and particle breakage of tailings under high confining pressure , 2020 .

[26]  F. Yu Influence of Particle Breakage on Behavior of Coral Sands in Triaxial Tests , 2019 .

[27]  Houzhen Wei,et al.  Particle obstruction and crushing of dredged calcareous soil in the Nansha Islands, South China Sea , 2019, Engineering Geology.

[28]  J. Fonseca,et al.  On the kinematics of shelly carbonate sand using X-ray micro tomography , 2019, Engineering Geology.

[29]  G. Scaringi,et al.  Relating fragmentation, plastic work and critical state in crushable rock clasts , 2018, Engineering Geology.

[30]  V. Sivakumar,et al.  Small-strain behaviour and crushability of Ballyconnelly carbonate sand under monotonic and cyclic loading , 2018, Canadian Geotechnical Journal.

[31]  D. Gallipoli,et al.  Critical state behaviour of weakly bonded soil in drained state , 2018 .

[32]  T. Zhao,et al.  Evolution of Particle Breakage for Calcareous Sands during Ring Shear Tests , 2018 .

[33]  Yang Wu,et al.  Influences of Particle Characteristic and Compaction Degree on the Shear Response of Clinker Ash , 2017 .

[34]  J. Fonseca,et al.  Quantification of the morphology of shelly carbonate sands using 3D images , 2017 .

[35]  F. Yu Particle breakage and the critical state of sands , 2017 .

[36]  Y. Javanmardi,et al.  A reference state curve to define the state of soils over a wide range of pressures and densities , 2017 .

[37]  Yufeng Gao,et al.  Constitutive Modeling of Coarse-Grained Materials Incorporating the Effect of Particle Breakage on Critical State Behavior in a Framework of Generalized Plasticity , 2017 .

[38]  Wei Wu,et al.  A basic hypoplastic constitutive model for sand , 2017 .

[39]  Yang Wu,et al.  Shear behaviour of methane hydrate bearing sand with various particle characteristics and fines. , 2017 .

[40]  Yang Xiao,et al.  Elastoplastic Constitutive Model for Rockfill Materials Considering Particle Breakage , 2017 .

[41]  Yin‐Fu Jin,et al.  Modeling Mechanical Behavior of Very Coarse Granular Materials , 2017 .

[42]  Guofang Xu,et al.  Modeling the viscous behavior of frozen soil with hypoplasticity , 2016 .

[43]  Guofang Xu,et al.  An extended hypoplastic constitutive model for frozen sand , 2016 .

[44]  Huabei Liu,et al.  Stress-Dilatancy Relationship of Zipingpu Gravel under Cyclic Loading in Triaxial Stress States , 2016 .

[45]  Yang Xiao,et al.  Influence of Particle Breakage on Critical State Line of Rockfill Material , 2016 .

[46]  Huabei Liu,et al.  Stress-dilatancy of Zipingpu gravel in triaxial compression tests , 2016 .

[47]  Sanjay Nimbalkar,et al.  Application of bounding surface plasticity concept for clay-fouled ballast under drained loading , 2015 .

[48]  Wei Wu,et al.  A SPH approach for large deformation analysis with hypoplastic constitutive model , 2015 .

[49]  R. Borja,et al.  Micropolar hypoplasticity for persistent shear band in heterogeneous granular materials , 2015 .

[50]  P. Hicher,et al.  Experimental framework for evaluating the mechanical behavior of dry and wet crushable granular materials based on the particle breakage ratio , 2015 .

[51]  Dirk Wegener,et al.  Numerical simulation of a tunnel surrounded by sand under earthquake using a hypoplastic model , 2014 .

[52]  Yifei Sun,et al.  Bounding surface model for ballast with additional attention on the evolution of particle size distribution , 2014 .

[53]  J. DeJong,et al.  Particle breakage and the critical state of sand , 2014 .

[54]  Behzad Fatahi,et al.  A constitutive model for cemented clays capturing cementation degradation , 2014 .

[55]  M. Weng,et al.  Elastoplastic Deformation Characteristics of Gravelly Soils , 2013 .

[56]  Degao Zou,et al.  Associated Generalized Plasticity Framework for Modeling Gravelly Soils Considering Particle Breakage , 2013 .

[57]  Jürgen Grabe,et al.  Active earth pressure shielding in quay wall constructions: numerical modeling , 2012 .

[58]  Matthew Richard Coop,et al.  THE INFLUENCE OF PARTICLE BREAKAGE ON THE LOCATION OF THE CRITICAL STATE LINE OF SANDS , 2011 .

[59]  Pierre-Yves Hicher,et al.  A constitutive model for granular materials considering grain breakage , 2011 .

[60]  Adrian R. Russell,et al.  PARTICLE CRUSHING AND DEFORMATION BEHAVIOUR , 2010 .

[61]  B. Indraratna,et al.  Experimental and Numerical Study of Railway Ballast Behavior under Cyclic Loading , 2010 .

[62]  Minna Karstunen,et al.  Micromechanical analysis of kinematic hardening in natural clay , 2009 .

[63]  E. Bauer Hypoplastic modelling of moisture-sensitive weathered rockfill materials , 2009 .

[64]  J. Carter,et al.  A volume–stress model for sands under isotropic and critical stress states , 2008 .

[65]  Kenichi Maeda,et al.  Changing grading of soil: effect on critical states , 2008 .

[66]  David Mašín,et al.  Improvement of a hypoplastic model to predict clay behaviour under undrained conditions , 2007 .

[67]  Itai Einav,et al.  Breakage mechanics—Part I: Theory , 2007 .

[68]  K. G. Sharma,et al.  Constitutive Model for Rockfill Materials and Determination of Material Constants , 2006 .

[69]  T. M. Bodas Freitas,et al.  Particle breakage during shearing of a carbonate sand , 2004 .

[70]  Seiichi Miura,et al.  Deformation-strength evaluation of crushable volcanic soils by laboratory and in-situ testing , 2003 .

[71]  Eduardo Alonso,et al.  A CONSTITUTIVE MODEL FOR CRUSHED GRANULAR AGGREGATES WHICH INCLUDES SUCTION EFFECTS , 2003 .

[72]  Wei Wu,et al.  Hypoplastic constitutive model with critical state for granular materials , 1996 .

[73]  Jerry A. Yamamuro,et al.  SIGNIFICANCE OF PARTICLE CRUSHING IN GRANULAR MATERIALS , 1996 .

[74]  Erich Bauer,et al.  CALIBRATION OF A COMPREHENSIVE HYPOPLASTIC MODEL FOR GRANULAR MATERIALS , 1996 .

[75]  Jerry A. Yamamuro,et al.  Undrained Sand Behavior in Axisymmetric Tests at High Pressures , 1996 .

[76]  Jerry A. Yamamuro,et al.  DRAINED SAND BEHAVIOR IN AXISYMMETRIC TESTS AT HIGH PRESSURES , 1996 .

[77]  Wei Wu,et al.  A simple hypoplastic constitutive model for sand , 1994 .

[78]  Matthew Richard Coop,et al.  The mechanics of uncemented carbonate sands , 1990 .

[79]  Dimitrios Kolymbas,et al.  Numerical testing of the stability criterion for hypoplastic constitutive equations , 1990 .

[80]  B. Hardin,et al.  Crushing of Soil Particles , 1985 .

[81]  Norihiko Miura,et al.  PARTICLE-CRUSHING OF A DECOMPOSED GRANITE SOIL UNDER SHEAR STRESSES , 1979 .

[82]  Fumio Tatsuoka,et al.  EFFECTS OF GRAIN SIZE AND GRADING ON DYNAMIC SHEAR MODULI OF SANDS , 1977 .

[83]  Raúl J. Marsal,et al.  Large Scale Testing of Rockfill Materials , 1967 .

[84]  Iraj Farhoomand,et al.  Compressibility and crushing of granular soil in anisotropic triaxial compression , 1967 .