Human Chronotypes from a Theoretical Perspective

The endogenous circadian timing system has evolved to synchronize an organism to periodically recurring environmental conditions. Those external time cues are called Zeitgebers. When entrained by a Zeitgeber, the intrinsic oscillator adopts a fixed phase relation to the Zeitgeber. Here, we systematically study how the phase of entrainment depends on clock and Zeitgeber properties. We combine numerical simulations of amplitude-phase models with predictions from analytically tractable models. In this way we derive relations between the phase of entrainment to the mismatch between the endogenous and Zeitgeber period, the Zeitgeber strength, and the range of entrainment. A core result is the “180° rule” asserting that the phase varies over a range of about 180° within the entrainment range. The 180° rule implies that clocks with a narrow entrainment range (“strong oscillators”) exhibit quite flexible entrainment phases. We argue that this high sensitivity of the entrainment phase contributes to the wide range of human chronotypes.

[1]  Hanspeter Herzel,et al.  Quantification of Circadian Rhythms in Single Cells , 2009, PLoS Comput. Biol..

[2]  Hanspeter Herzel,et al.  Entrainment in a Model of the Mammalian Circadian Oscillator , 2005, Journal of biological rhythms.

[3]  Serge Daan,et al.  A functional analysis of circadian pacemakers in nocturnal rodents , 2005, Journal of comparative physiology.

[4]  D. Dijk,et al.  Sex difference in the near-24-hour intrinsic period of the human circadian timing system , 2011, Proceedings of the National Academy of Sciences.

[5]  Rütger Wever Zum Mechanismus der biologischen 24-Stunden-Periodik , 2004, Kybernetik.

[6]  S. Daan,et al.  University of Groningen Circadian Rhythms of Locomotor Activity in Captive Birds and Mammals , 2004 .

[7]  Daniel B. Forger,et al.  A detailed predictive model of the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[8]  L. Glass,et al.  Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. , 1981, Science.

[9]  Pecht,et al.  Cold Spring Harbor Symposia on Quantitative Biology , 2005, Protoplasma.

[10]  N Mrosovsky,et al.  Masking: history, definitions, and measurement. , 1999, Chronobiology international.

[11]  Achim Kramer,et al.  Tuning the Mammalian Circadian Clock: Robust Synergy of Two Loops , 2011, PLoS Comput. Biol..

[12]  H. Berg Cold Spring Harbor Symposia on Quantitative Biology.: Vol. LII. Evolution of Catalytic Functions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987, ISBN 0-87969-054-2, xix + 955 pp., US $150.00. , 1989 .

[13]  Hamel Georg Duffing, Ingenieur: Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung. Sammlung Vieweg. Heft 41/42, Braunschweig 1918. VI+134 S , 1921 .

[14]  K. Hoffmann Zum Einfluß der Zeitgeberstärke auf die Phasenlage der synchronisierten circadianen Periodik , 1969, Zeitschrift für vergleichende Physiologie.

[15]  Richard E Kronauer,et al.  Entrainment of the human circadian pacemaker to longer-than-24-h days , 2007, Proceedings of the National Academy of Sciences.

[16]  Hanspeter Herzel,et al.  Coupling governs entrainment range of circadian clocks , 2010, Molecular systems biology.

[17]  S. Daan,et al.  The Art of Entrainment , 2003, Journal of biological rhythms.

[18]  Yoshiki Kuramoto,et al.  Chemical Oscillations, Waves, and Turbulence , 1984, Springer Series in Synergetics.

[19]  C. Pittendrigh Circadian Systems: Entrainment , 1981 .

[20]  J. Aschoff,et al.  Exogenous and endogenous components in circadian rhythms. , 1960, Cold Spring Harbor symposia on quantitative biology.

[21]  A. Winfree The geometry of biological time , 1991 .

[22]  C. Johnson,et al.  Forty years of PRCs--what have we learned? , 1999, Chronobiology international.

[23]  S. Daan,et al.  Phase and Period Responses of the Circadian System of Mice (Mus musculus) to Light Stimuli of Different Duration , 2006, Journal of biological rhythms.

[24]  B. Ronacher,et al.  Phase response curves elucidating the dynamics of coupled oscillators. , 2009, Methods in enzymology.

[25]  Kenneth P. Wright,et al.  Entrainment of the Human Circadian System by Light , 2005, Journal of biological rhythms.

[26]  Bernhard Ronacher,et al.  Chapter 1 Phase Response Curves , 2009 .

[27]  Christopher R. Jones,et al.  Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans , 1999, Nature Medicine.

[28]  Takahiro Harada,et al.  Optimal waveform for the entrainment of a weakly forced oscillator. , 2010, Physical review letters.

[29]  A. Kramer,et al.  A circadian clock in HaCaT keratinocytes. , 2011, The Journal of investigative dermatology.

[30]  R. Kronauer,et al.  Stability, precision, and near-24-hour period of the human circadian pacemaker. , 1999, Science.

[31]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[32]  Serge Daan,et al.  A functional analysis of circadian pacemakers in nocturnal rodents , 1976, Journal of comparative physiology.

[33]  L. Glass,et al.  From Clocks to Chaos: The Rhythms of Life , 1988 .

[34]  M. Merrow,et al.  A Circadian Surface of Entrainment: Varying T, τ, and Photoperiod in Neurospora crassa , 2010, Journal of biological rhythms.

[35]  G. Kramer,et al.  EXPERIMENTS ON BIRD ORIENTATION , 2008 .

[36]  R. Wever [ON THE MECHANISM OF BIOLOGICAL 24-HOUR PERIODICITY. 3. APPLICATION OF THE MODEL EQUATION]. , 1964, Kybernetik.

[37]  S. Daan,et al.  The Progression of Circadian Phase during Light Exposure in Animals and Humans , 2009, Journal of biological rhythms.

[38]  Hanspeter Herzel,et al.  How to Achieve Fast Entrainment? The Timescale to Synchronization , 2009, PloS one.

[39]  Anne-Marie Chang,et al.  The mouse Clock mutation reduces circadian pacemaker amplitude and enhances efficacy of resetting stimuli and phase-response curve amplitude. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[40]  A. Wirz-Justice,et al.  Life between Clocks: Daily Temporal Patterns of Human Chronotypes , 2003, Journal of biological rhythms.

[41]  Ook Joon Yoo,et al.  PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Joseph S. Takahashi,et al.  Temperature as a Universal Resetting Cue for Mammalian Circadian Oscillators , 2010, Science.

[43]  G. Duffing,et al.  Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung , 1918 .

[44]  R. Foster,et al.  Entrainment of Circadian Programs , 2003, Chronobiology international.

[45]  Ueli Schibler,et al.  Properties, Entrainment, and Physiological Functions of Mammalian Peripheral Oscillators , 2006, Journal of biological rhythms.

[46]  Christian Cajochen,et al.  A Phase Response Curve to Single Bright Light Pulses in Human Subjects , 2003, The Journal of physiology.

[47]  Y. Sakaki,et al.  Effects of aging on central and peripheral mammalian clocks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Aschoff,et al.  Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment , 1978, Naturwissenschaften.

[49]  Steven M. Reppert,et al.  Illuminating the Circadian Clock in Monarch Butterfly Migration , 2003, Science.