An optimal control problem for a two-prey and one-predator model with diffusion
暂无分享,去创建一个
Radu Strugariu | Gabriel Dimitriu | Narcisa C. Apreutesei | G. Dimitriu | N. Apreutesei | R. Strugariu
[1] I. I. Vrabie. C[0]-semigroups and applications , 2003 .
[2] Ying-Hen Hsieh,et al. GLOBAL DYNAMICS OF A PREDATOR-PREY MODEL WITH STAGE STRUCTURE FOR THE PREDATOR∗ , 2007 .
[3] V. Barbu. Mathematical Methods in Optimization of Differential Systems , 1994 .
[4] N. Apreutesei,et al. A Trotter–Kato type result for a second order difference inclusion in a Hilbert space , 2010 .
[5] N. Apreutesei,et al. Necessary Optimality Conditions for a Lotka-Volterra Three Species System , 2006 .
[6] Chao-hua,et al. An Optimal Control Problem of a Coupled Nonlinear Parabolic Population System , 2007 .
[7] G. Dimitriu,et al. Numerical Optimal Harvesting for an Age-Dependent Prey-Predator System , 2012 .
[8] I. I. Vrabie,et al. C₀-semigroups and applications , 2003 .
[9] F. Brauer,et al. Mathematical Models in Population Biology and Epidemiology , 2001 .
[10] Gabriel Dimitriu,et al. On a prey-predator reaction-diffusion system with Holling type III functional response , 2010, J. Comput. Appl. Math..
[11] R. Nisbet,et al. Response of equilibrium states to spatial environmental heterogeneity in advective systems. , 2006, Mathematical biosciences and engineering : MBE.
[12] M. Pierre. Global Existence in Reaction-Diffusion Systems with Control of Mass: a Survey , 2010 .
[13] Marcus R. Garvie,et al. Optimal Control of a Nutrient-Phytoplankton-Zooplankton-Fish System , 2007, SIAM J. Control. Optim..
[14] Narcisa C. Apreutesei,et al. An optimal control problem for a prey-predator system with a general functional response , 2009, Appl. Math. Lett..
[15] Wonlyul Ko,et al. Analysis of diffusive two-competing-prey and one-predator systems with Beddington–Deangelis functional response , 2009 .
[16] V H Edwards,et al. The influence of high substrate concentrations on microbial kinetics , 1970, Biotechnology and bioengineering.
[17] N. Rashevsky,et al. Mathematical biology , 1961, Connecticut medicine.
[18] Dexing Feng,et al. s10255-007-0378-z , 2007 .
[19] Jie Li,et al. Chaos control and synchronization of a three-species food chain model via Holling functional response , 2010, Int. J. Comput. Math..
[20] J. F. Gilliam,et al. FUNCTIONAL RESPONSES WITH PREDATOR INTERFERENCE: VIABLE ALTERNATIVES TO THE HOLLING TYPE II MODEL , 2001 .
[21] Thorsten Gerber,et al. Semigroups Of Linear Operators And Applications To Partial Differential Equations , 2016 .
[22] Yuan Lou,et al. Optimal control of growth coefficient on a steady-state population model , 2010 .
[23] Fredi Tröltzsch,et al. Second Order Sufficient Optimality Conditions for Nonlinear Parabolic Control Problems with State Constraints , 2000 .
[24] John F. Andrews,et al. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates , 1968 .