Intracellular calcium concentration in vascular smooth muscle cells of rats with cirrhosis.

[1]  W. Jiménez,et al.  Impaired responsiveness to angiotensin II in experimental cirrhosis: Role of nitric oxide , 1993, Hepatology.

[2]  V. Gopalakrishnan,et al.  Vasopressin increases cytosolic free [Ca2+] in the neonatal rat cardiomyocyte. Evidence for V1 subtype receptors. , 1991, Circulation research.

[3]  J. Reid,et al.  Impaired pressor reactivity in cirrhosis: Evidence for a peripheral vascular defect , 1991, Hepatology.

[4]  L. Blendis,et al.  Cardiovascular Complications of Liver Disease , 1990 .

[5]  D. Granger,et al.  Splanchnic Hemodynamics in Chronic Portal Hypertension , 1986, Seminars in liver disease.

[6]  M. Paller,et al.  Pressor resistance to vasopressin in sodium depletion, potassium depletion, and cirrhosis. , 1986, The American journal of physiology.

[7]  A. A. Abdel-Latif Calcium-mobilizing receptors, polyphosphoinositides, and the generation of second messengers. , 1986, Pharmacological reviews.

[8]  J. López-Novoa,et al.  Effect of volume expansion on hemodynamics, capillary permeability and renal function in conscious, cirrhotic rats , 1986, Hepatology.

[9]  M. Paller,et al.  Decreased pressor reactivity to angiotensin II in cirrhotic rats. Evidence for a post-receptor defect in angiotensin action. , 1985, Circulation research.

[10]  U. Malmqvist,et al.  Effects of Ca2+ on force-velocity characteristics of normal and hypertrophic smooth muscle of the rat portal vein. , 1985, Acta physiologica Scandinavica.

[11]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[12]  J. Bruix,et al.  Temporal relationship between hyperaldosteronism, sodium retention and ascites formation in rats with experimental cirrhosis , 1985, Hepatology.

[13]  R. Groszmann,et al.  Increased blood flow through the portal system in cirrhotic rats. , 1984, Gastroenterology.

[14]  J. Finberg,et al.  Blunted pressor response to angiotensin and sympathomimetic amines in bile-duct ligated dogs. , 1981, Clinical science.

[15]  V. Arroyo,et al.  Effect of angiotensin‐ll blockade on systemic and hepatic haemodynamics and on the renin‐angiotensin‐aldosterone system in cirrhosis with ascites , 1981, European journal of clinical investigation.

[16]  V. Arroyo,et al.  Hepatic hemodynamics and the renin-angiotensin-aldosterone system in cirrhosis , 1980 .

[17]  J. Hoefs,et al.  Prostaglandins: modulators of renal function and pressor resistance in chronic liver disease. , 1979, The Journal of clinical endocrinology and metabolism.

[18]  R. Ross,et al.  The smooth muscle cell in culture. , 1979, Physiological reviews.

[19]  J. Laragh,et al.  Prior Receptor Occupancy as a Determinant of the Pressor Activity of Infused Angiotensin II in the Rat , 1975, Circulation research.

[20]  R. Groszmann,et al.  Circulation times in the splanchnic and hepatic beds in alcoholic liver disease. , 1972, Gastroenterology.

[21]  P. Sutton,et al.  Instant cirrhosis. An improved method for producing cirrhosis of the liver in rats by simultaneous administration of carbon tetrachloride and phenobarbitone. , 1969, British journal of experimental pathology.

[22]  J. Laragh,et al.  PROLONGED INFUSIONS OF ANGIOTENSIN II AND NOREPINEPHRINE AND BLOOD PRESSURE, ELECTROLYTE BALANCE, AND ALDOSTERONE AND CORTISOL SECRETION IN NORMAL MAN AND IN CIRRHOSIS WITH ASCITES. , 1965, The Journal of clinical investigation.

[23]  J. Laragh,et al.  ANGIOTENSIN II, NOREPINEPHRINE, AND RENAL TRANSPORT OF ELECTROLYTES AND WATER IN NORMAL MAN AND IN CIRRHOSIS WITH ASCITES. , 1963, The Journal of clinical investigation.