Fundamentals and Special Applications of Non-Contact Scanning Force Microscopy

Publisher Summary This chapter discusses the fundamentals and special applications of noncontact scanning force microscopy (SFM). By critically analyzing the underlying theories for the various SFM applications, some conclusions concerning dominant future applications in science and technology, further instrumental improvements, and its ultimate capabilities can be drawn. One of the definite scientific goals in SFM is to completely understand force-versus-distance curves. The major applications of noncontact SFM is provided by the interaction between two solids at arbitrary separation and with an arbitrary intervening medium. Other more specific scientific applications of noncontact SFM predominantly include the investigation of electric and magnetic microfields resulting from highly localized charge and spin arrangements. If future technologies allow SFM probes to be fabricated with arbitrary sharpness while keeping satisfactory mechanical properties, the required probe radius is solely determined by the requirement that the probe has to be large enough so that the interaction variation across the sample is well above the thermal noise limit. Sensitivity to forces or force gradients and spatial resolution are, thus, unequivocally related in noncontact SFM. From this universal relation, it then follows that it would never be possible to image individual spins by magnetic force microscopy, but it is indeed possible to image the equivalent of only one electron charge smeared out over a certain area.

[1]  P. Tarazona,et al.  Fluids in narrow pores: adsorption, capillary condensation, and critical points , 1986 .

[2]  R. L. Comstock,et al.  AN ANALYTICAL MODEL OF THE WRITE PROCESS IN DIGITAL MAGNETIC RECORDING , 1972 .

[3]  C. Heiden,et al.  Magnetic force microscopy: Current status and future trends , 1991 .

[4]  C. Kittel,et al.  Physical Theory of Ferromagnetic Domains , 1949 .

[5]  J. Goodenough Interpretation of domain patterns recently found in BiMn and SiFe alloys , 1956 .

[6]  J. E. Stern,et al.  Magnetic force microscopy of thin Permalloy films , 1989 .

[7]  Robert I. Potter,et al.  Analysis of Saturation Magnetic Recording Based on Arctangent Magnetization Transitions , 1970 .

[8]  D. Sarid,et al.  Compact scanning-force microscope using a laser diode. , 1988, Optics letters.

[9]  K. Sueoka,et al.  Study of tip magnetization behavior in magnetic force microscope , 1991 .

[10]  B. Derjaguin,et al.  Untersuchungen über die Reibung und Adhäsion, IV , 1934 .

[11]  U. Hartmann,et al.  Calculation of the Bloch wall contrast in magnetic force microscopy , 1870 .

[12]  Magnetic force microscopy , 1990 .

[13]  V. Panov,et al.  Force dependences for the definition of the atomic force microscopy spatial resolution , 1988 .

[14]  Hemantha K. Wickramasinghe,et al.  High‐resolution magnetic imaging of domains in TbFe by force microscopy , 1988 .

[15]  R. Celotta,et al.  High spatial resolution quantitative micromagnetics (invited) , 1990 .

[16]  Theoretical estimates of forces acting on a magnetic force microscope tip over a high temperature superconductor , 1991 .

[17]  U. Hartmann,et al.  PROBE CALIBRATION IN MAGNETIC FORCE MICROSCOPY , 1990 .

[18]  K. Eric Drexler,et al.  Molecular tip arrays for molecular imaging and nanofabrication , 1991 .

[19]  Retarded Van der Waals potential between a conducting plane and a polarizable particle , 1981 .

[20]  P. Hansma,et al.  An atomic-resolution atomic-force microscope implemented using an optical lever , 1989 .

[21]  D. Pohl SXM — Rastermikroskopien für x‐beliebige Oberflächeneigenschaften , 1991 .

[22]  Bit analysis of magnetic recording media by force microscopy , 1989 .

[23]  J. E. Stern,et al.  Force microscopy of magnetization patterns in longitudinal recording media , 1988 .

[24]  E. M. Lifshitz,et al.  The general theory of van der Waals forces , 1961 .

[25]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[26]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[27]  H. Güntherodt,et al.  Analysis of magnetic bit pattern by magnetic force microscopy , 1990 .

[28]  G. McClelland,et al.  Atomic Force Microscopy: General Principles and a New Implementation , 1987 .

[29]  E. Meyer,et al.  Scanning Force Microscopy (SFM) , 1992 .

[30]  C. Quate,et al.  Atomic resolution with the atomic force microscope on conductors and nonconductors , 1988 .

[31]  U. Hartmann,et al.  Investigation of Bloch wall fine structures by magnetic force microscopy , 1870 .

[32]  O. Wolter,et al.  Batch fabricated sensors for magnetic force microscopy , 1990 .

[33]  Sidney R. Cohen,et al.  Force microscopy with a bidirectional capacitance sensor , 1990 .

[34]  Burnham,et al.  Work-function anisotropies as an origin of long-range surface forces. , 1992, Physical review letters.

[35]  Computation of fields and forces in magnetic force microscopy , 1989, International Magnetics Conference.

[36]  U. Hartmann,et al.  Theory of van der Waals microscopy , 1991 .

[37]  Hartmann van der Waals interactions between sharp probes and flat sample surfaces. , 1991, Physical review. B, Condensed matter.

[38]  E. Meyer,et al.  10‐nm resolution by magnetic force microscopy on FeNdB , 1990 .

[39]  J. E. Stern,et al.  Deposition and imaging of localized charge on insulator surfaces using a force microscope , 1988 .

[40]  H. Ullmaier,et al.  Neutron diffraction studies of the morphology of flux line crystals in type II superconductors , 1974 .

[41]  J. E. Stern,et al.  Magnetic force microscopy: General principles and application to longitudinal recording media , 1990 .

[42]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[43]  C. Heiden,et al.  Force microscope with capacitive displacement detection , 1990 .

[44]  Alvarado,et al.  Observation of single charge carriers by force microscopy. , 1990, Physical review letters.

[45]  Hemantha K. Wickramasinghe,et al.  Magnetic force microscopy with 25 nm resolution , 1989 .

[46]  C. Mathew Mate,et al.  Atomic force microscopy of polymeric liquid films , 1989 .

[47]  Christian Schönenberger,et al.  A differential interferometer for force microscopy , 1989 .

[48]  Y. Martin,et al.  Magnetic imaging by ‘‘force microscopy’’ with 1000 Å resolution , 1987 .

[49]  U. Hartmann,et al.  Magnetic force microscopy of domain wall stray fields on single‐crystal iron whiskers , 1990 .

[50]  U. Hartmann The point dipole approximation in magnetic force microscopy , 1989 .

[51]  D. Rugar,et al.  Improved fiber‐optic interferometer for atomic force microscopy , 1989 .

[52]  Chui Structure of hard spheres in contact with a spherical wall. , 1991, Physical review. B, Condensed matter.

[53]  Aharoni,et al.  Magnetic domain walls in thick iron films. , 1991, Physical review. B, Condensed matter.

[54]  U. Hartmann Magnetic force microscopy: Some remarks from the micromagnetic point of view , 1988 .

[55]  U. Hartmann Magnetic microfield analysis by force microscopy , 1990 .

[56]  Ryan,et al.  Micromagnetics of domain walls at surfaces. , 1991, Physical review. B, Condensed matter.

[57]  C. Heiden,et al.  Imaging of tip‐sample compliance in STM , 1988 .

[58]  C. Schönenberger,et al.  Separation of magnetic and topographic effects in force microscopy , 1990 .

[59]  U. Hartmann,et al.  Domain-Wall Imaging by Magnetic Force Micrscopy , 1990, International Conference on Magnetics.

[60]  H. C. Hamaker The London—van der Waals attraction between spherical particles , 1937 .

[61]  Hemantha K. Wickramasinghe,et al.  Atomic force microscope–force mapping and profiling on a sub 100‐Å scale , 1987 .

[62]  Grütter,et al.  Theoretical approach to magnetic force microscopy. , 1989, Physical review. B, Condensed matter.

[63]  J. Clem,et al.  Simple model for the vortex core in a type II superconductor , 1975 .

[64]  G. Binnig,et al.  A low‐temperature atomic force/scanning tunneling microscope for ultrahigh vacuum , 1991 .

[65]  G. Feinberg,et al.  General Theory of the van der Waals Interaction: A Model-Independent Approach , 1970 .

[66]  O. Wolter,et al.  Magnetic force microscopy with batch‐fabricated force sensors , 1991 .

[67]  O. Wolter,et al.  Micromachined silicon sensors for scanning force microscopy , 1991 .

[68]  Girard Theoretical atomic-force-microscopy study of a stepped surface: Nonlocal effects in the probe. , 1991, Physical review. B, Condensed matter.

[69]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[70]  John Moreland,et al.  High‐resolution, tunneling‐stabilized magnetic imaging and recording , 1990 .

[71]  Roland Wiesendanger,et al.  Scanning Tunneling Microscopy II , 1992 .

[72]  H. Kumar Wickramasinghe,et al.  Scanning probe microscopy: Current status and future trends , 1990 .

[73]  C. Schönenberger,et al.  Understanding magnetic force microscopy , 1990 .

[74]  H. Weber,et al.  Thermal dependence of fluorescence lines of Er3+ in YAlO3 , 1989 .

[75]  W. Kohn,et al.  Van der Waals interaction between an atom and a solid surface , 1976 .

[76]  G. Feinberg Retarded dispersion forces between conducting spheres , 1974 .

[77]  A. Boef Preparation of magnetic tips for a scanning force microscope , 1990 .

[78]  David Tabor,et al.  The calculation of van der Waals dispersion forces between macroscopic bodies , 1972, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[79]  Hartmann Analysis of Bloch-wall fine structures by magnetic force microscopy. , 1989, Physical review. B, Condensed matter.

[80]  D. Rugar,et al.  Magnetic Force Microscopy (MFM) , 1992 .

[81]  U. Hartmann Theory of magnetic force microscopy , 1990 .

[82]  N. Amer,et al.  Novel optical approach to atomic force microscopy , 1988 .

[83]  H. K. Wickramasinghe Related Scanning Techniques , 1992 .

[84]  E. Lifshitz The theory of molecular attractive forces between solids , 1956 .

[85]  R. Sherwood,et al.  Levitation of a magnet over a flat type II superconductor , 1988 .

[86]  D. Rugar,et al.  Frequency modulation detection using high‐Q cantilevers for enhanced force microscope sensitivity , 1991 .

[87]  D. Rugar,et al.  Submicron domains for high density magneto-optic data storage , 1987 .

[88]  Improved microtips for scanning probe microscopy , 1990 .

[89]  Uzi Landman,et al.  Atomistic Mechanisms and Dynamics of Adhesion, Nanoindentation, and Fracture , 1990, Science.

[90]  C. Heiden,et al.  Analysis of Magnetic Domains in Ferromagnets and Superconductors by Force and Tunneling Microscopy , 1991 .

[91]  C. Quate,et al.  Forces in atomic force microscopy in air and water , 1989 .

[92]  F. London,et al.  Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften , 1930 .