A Stable Algorithm for Flat Radial Basis Functions on a Sphere

When radial basis functions (RBFs) are made increasingly flat, the interpolation error typically decreases steadily until some point when Runge-type oscillations either halt or reverse this trend. Because the most obvious method to calculate an RBF interpolant becomes a numerically unstable algorithm for a stable problem in the case of near-flat basis functions, there will typically also be a separate point at which disastrous ill-conditioning enters. We introduce here a new method, RBF-QR, which entirely eliminates such ill-conditioning, and we apply it in the special case when the data points are distributed over the surface of a sphere. This algorithm works even for thousands of node points, and it allows the RBF shape parameter to be optimized without the limitations imposed by stability concerns. Since interpolation in the flat RBF limit on a sphere is found to coincide with spherical harmonics interpolation, new insights are gained as to why the RBF approach (with nonflat basis functions) often is the more accurate of the two methods.

[1]  Clive Temperton On Scalar and Vector Transform Methods for Global Spectral Models , 1991 .

[2]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..

[3]  Bengt Fornberg,et al.  Comparison of finite difference‐ and pseudospectral methods for convective flow over a sphere , 1997 .

[4]  E. Kansa,et al.  Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .

[5]  R. Schaback Comparison of Radial Basis Function Interpolants , 1993 .

[6]  Willi Freeden,et al.  Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .

[7]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[8]  Jungho Yoon,et al.  Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..

[9]  S. J. Thomas,et al.  The NCAR spectral element climate dynamical core: Semi-implicit eulerian formulation , 2005 .

[10]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[11]  Martin J. Mohlenkamp A fast transform for spherical harmonics , 1997 .

[12]  D. Healy,et al.  Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .

[13]  Philip E. Merilees,et al.  The pseudospectral approximation applied to the shallow water equations on a sphere , 1973 .

[14]  B. Fornberg,et al.  A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .

[15]  W. Madych,et al.  Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .

[16]  G. L. Browning,et al.  A comparison of three numerical methods for solving differential equations on the sphere , 1989 .

[17]  C. Shu,et al.  Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .

[18]  A. U.S.,et al.  Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .

[19]  R. Schaback Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .

[20]  B. Fornberg,et al.  Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .

[21]  E. J. Kansa,et al.  Multi-quadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II , 1990 .

[22]  M. Taylor The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .

[23]  Bengt Fornberg,et al.  The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..

[24]  Bengt Fornberg,et al.  On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..

[25]  R. E. Carlson,et al.  The parameter R2 in multiquadric interpolation , 1991 .

[26]  Philip E. Merilees,et al.  Numerical experiments with the pseudospectral method in spherical coordinates , 1974 .

[27]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[28]  James J. Hack,et al.  Description of a Global Shallow Water Model Based on the Spectral Transform Method , 1992 .

[29]  Robin J. Y McLeod,et al.  Geometry and Interpolation of Curves and Surfaces , 1998 .

[30]  Natasha Flyer,et al.  Transport schemes on a sphere using radial basis functions , 2007, J. Comput. Phys..

[31]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[32]  Francis X. Giraldo,et al.  A Scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical Core Tests , 2004 .

[33]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[34]  Gabriele Steidl,et al.  Fast and stable algorithms for discrete spherical Fourier transforms , 1998 .

[35]  P. Swarztrauber,et al.  Fast Shallow-Water Equation Solvers in Latitude-Longitude Coordinates , 1998 .

[36]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[37]  B. Fornberg,et al.  Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .

[38]  Mark Tygert,et al.  Fast Algorithms for Spherical Harmonic Expansions , 2006, SIAM J. Sci. Comput..

[39]  Stephen J. Thomas,et al.  The NCAR Spectral Element Climate Dynamical Core: Semi-Implicit Eulerian Formulation , 2005, J. Sci. Comput..

[40]  Paul N. Swarztrauber Spectral Transform Methods for Solving the Shallow-Water Equations on the Sphere , 1996 .

[41]  Bengt Fornberg,et al.  Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids , 2005, Adv. Comput. Math..

[42]  T. Driscoll,et al.  Interpolation in the limit of increasingly flat radial basis functions , 2002 .