A Stable Algorithm for Flat Radial Basis Functions on a Sphere
暂无分享,去创建一个
[1] Clive Temperton. On Scalar and Vector Transform Methods for Global Spectral Models , 1991 .
[2] Bengt Fornberg,et al. Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..
[3] Bengt Fornberg,et al. Comparison of finite difference‐ and pseudospectral methods for convective flow over a sphere , 1997 .
[4] E. Kansa,et al. Circumventing the ill-conditioning problem with multiquadric radial basis functions: Applications to elliptic partial differential equations , 2000 .
[5] R. Schaback. Comparison of Radial Basis Function Interpolants , 1993 .
[6] Willi Freeden,et al. Constructive Approximation on the Sphere: With Applications to Geomathematics , 1998 .
[7] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[8] Jungho Yoon,et al. Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..
[9] S. J. Thomas,et al. The NCAR spectral element climate dynamical core: Semi-implicit eulerian formulation , 2005 .
[10] Shmuel Rippa,et al. An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..
[11] Martin J. Mohlenkamp. A fast transform for spherical harmonics , 1997 .
[12] D. Healy,et al. Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .
[13] Philip E. Merilees,et al. The pseudospectral approximation applied to the shallow water equations on a sphere , 1973 .
[14] B. Fornberg,et al. A numerical study of some radial basis function based solution methods for elliptic PDEs , 2003 .
[15] W. Madych,et al. Bounds on multivariate polynomials and exponential error estimates for multiquadratic interpolation , 1992 .
[16] G. L. Browning,et al. A comparison of three numerical methods for solving differential equations on the sphere , 1989 .
[17] C. Shu,et al. Local radial basis function-based differential quadrature method and its application to solve two-dimensional incompressible Navier–Stokes equations , 2003 .
[18] A. U.S.,et al. Stable Computation of Multiquadric Interpolants for All Values of the Shape Parameter , 2003 .
[19] R. Schaback. Multivariate Interpolation by Polynomials and Radial Basis Functions , 2005 .
[20] B. Fornberg,et al. Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .
[21] E. J. Kansa,et al. Multi-quadrics-a scattered data approximation scheme with applications to computational fluid dynamics-II , 1990 .
[22] M. Taylor. The Spectral Element Method for the Shallow Water Equations on the Sphere , 1997 .
[23] Bengt Fornberg,et al. The Runge phenomenon and spatially variable shape parameters in RBF interpolation , 2007, Comput. Math. Appl..
[24] Bengt Fornberg,et al. On choosing a radial basis function and a shape parameter when solving a convective PDE on a sphere , 2008, J. Comput. Phys..
[25] R. E. Carlson,et al. The parameter R2 in multiquadric interpolation , 1991 .
[26] Philip E. Merilees,et al. Numerical experiments with the pseudospectral method in spherical coordinates , 1974 .
[27] E. Kansa. MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .
[28] James J. Hack,et al. Description of a Global Shallow Water Model Based on the Spectral Transform Method , 1992 .
[29] Robin J. Y McLeod,et al. Geometry and Interpolation of Curves and Surfaces , 1998 .
[30] Natasha Flyer,et al. Transport schemes on a sphere using radial basis functions , 2007, J. Comput. Phys..
[31] Martin D. Buhmann,et al. Radial Basis Functions: Theory and Implementations: Preface , 2003 .
[32] Francis X. Giraldo,et al. A Scalable Spectral Element Eulerian Atmospheric Model (SEE-AM) for NWP: Dynamical Core Tests , 2004 .
[33] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces , 1971 .
[34] Gabriele Steidl,et al. Fast and stable algorithms for discrete spherical Fourier transforms , 1998 .
[35] P. Swarztrauber,et al. Fast Shallow-Water Equation Solvers in Latitude-Longitude Coordinates , 1998 .
[36] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[37] B. Fornberg,et al. Theoretical and computational aspects of multivariate interpolation with increasingly flat radial basis functions , 2003 .
[38] Mark Tygert,et al. Fast Algorithms for Spherical Harmonic Expansions , 2006, SIAM J. Sci. Comput..
[39] Stephen J. Thomas,et al. The NCAR Spectral Element Climate Dynamical Core: Semi-Implicit Eulerian Formulation , 2005, J. Sci. Comput..
[40] Paul N. Swarztrauber. Spectral Transform Methods for Solving the Shallow-Water Equations on the Sphere , 1996 .
[41] Bengt Fornberg,et al. Accuracy of radial basis function interpolation and derivative approximations on 1-D infinite grids , 2005, Adv. Comput. Math..
[42] T. Driscoll,et al. Interpolation in the limit of increasingly flat radial basis functions , 2002 .