The M-estimator in a multi-phase random nonlinear model

This paper considers M-estimation of a nonlinear regression model with multiple change-points occuring at unknown times. The multi-phase random design regression model, discontinuous in each change-point, have an arbitrary error $\epsilon$. In the case when the number of jumps is known, the M-estimator of locations of breaks and of regression parameters are studied. These estimators are consistent and the distribution of the regression parameter estimators is Gaussian. The estimator of each change-point converges, with the rate $n^{-1}$, to the smallest minimizer of the independent compound Poisson processes. The results are valid for a large class of error distributions.

[1]  R. Z. Khasʹminskiĭ,et al.  Statistical estimation : asymptotic theory , 1981 .

[2]  Hira L. Koul,et al.  Asymptotics of maximum likelihood estimator in a two-phase linear regression model , 2002 .

[3]  P. Feder The Log Likelihood Ratio in Segmented Regression , 1975 .

[4]  R. Gill Maximum likelihood estimation in generalized broken‐line regression , 2004 .

[5]  P. Perron,et al.  Estimating and testing linear models with multiple structural changes , 1995 .

[6]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[7]  Hira L. Koul,et al.  Asymptotics of M-estimators in two-phase linear regression models , 2003 .

[8]  Jeng-Min Chiou,et al.  Quasi‐Likelihood Regression with Multiple Indices and Smooth Link and Variance Functions , 2004 .

[9]  Andrew L. Rukhin,et al.  Change-Point Estimation as a Nonlinear Regression Problem , 1997 .

[10]  P. Gänssler Weak Convergence and Empirical Processes - A. W. van der Vaart; J. A. Wellner. , 1997 .

[11]  S. Geer Regression analysis and empirical processes , 1988 .

[12]  P. Feder On Asymptotic Distribution Theory in Segmented Regression Problems-- Identified Case , 1975 .

[13]  H. Robbins,et al.  Strong consistency of least squares estimates in multiple regression. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[14]  Gabriela Ciuperca,et al.  Maximum likelihood estimator in a multi-phase random regression model , 2008 .

[15]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[16]  Ryan Gill,et al.  Consistent estimation in generalized broken-line regression , 2004 .

[17]  P. K. Bhattacharya,et al.  Some aspects of change-point analysis , 1994 .

[18]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[19]  H. Müller,et al.  Multiple changepoint fitting via quasilikelihood, with application to DNA sequence segmentation , 2000 .

[20]  J. Zidek,et al.  ON SEGMENTED MULTIVARIATE REGRESSION , 1997 .

[21]  Ciuperca Gabriela Maximum likelihood estimator in a two-phase nonlinear random regression model , 2004 .

[22]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .