The Atomistic Green's Function Method: An Efficient Simulation Approach for Nanoscale Phonon Transport

This article presents a general formulation of an atomistic Green's function (AGF) method. The atomistic Green's function approach combines atomic-scale fidelity with asymptotic treatment of large-scale (bulk) features, such that the method is particularly well suited to address an emerging class of multiscale transport problems. A detailed mathematical derivation of the phonon transmission function is provided in terms of Green's functions and, using the transmission function, the heat flux integral is written in Landauer form. Within this theoretical framework, the required inputs to calculate heat flux are equilibrium atomic locations and an appropriate interatomic potential. Relevant algorithmic and implementation details are discussed. Several examples including a homogeneous atomic chain and two heterogeneous atomic chains are included to illustrate the applications of this methodology.

[1]  D. Poulikakos,et al.  Molecular dynamics simulation in nanoscale heat transfer: A review , 2003 .

[2]  M. Cross,et al.  Elastic Wave Transmission at an Abrupt Junction in a Thin Plate, with Application to Heat Transport and Vibrations in Mesoscopic Systems , 2000, cond-mat/0011501.

[3]  A R Plummer,et al.  Introduction to Solid State Physics , 1967 .

[4]  B. Gu,et al.  Effect of defects on the thermal conductivity in a nanowire , 2005 .

[5]  A. Ozpineci,et al.  Quantum effects of thermal conductance through atomic chains , 2001 .

[6]  Mahan,et al.  Theory of the thermal boundary resistance between dissimilar lattices. , 1990, Physical review. B, Condensed matter.

[7]  S. Datta Quantum Transport: Atom to Transistor , 2004 .

[8]  B. Gu,et al.  Phonon transport and thermal conductivity in dielectric quantum wire , 2003 .

[9]  Natalio Mingo,et al.  Phonon transport in nanowires coated with an amorphous material: An atomistic Green’s function approach , 2003 .

[10]  Resonant thermal transport in semiconductor barrier structures , 2004, cond-mat/0401315.

[11]  A. Majumdar,et al.  Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization , 2001 .

[12]  A. Smith,et al.  Measurement of Thermal Boundary Conductance of a Series of Metal-Dielectric Interfaces by the Transient Thermoreflectance Technique , 2005 .

[13]  T. Fisher,et al.  Simulation of Phonon Interfacial Transport in Strained Silicon-Germanium Heterostructures , 2005 .

[14]  J. M. Worlock,et al.  Measurement of the quantum of thermal conductance , 2000, Nature.

[15]  W. Little The Transport of Heat Between Dissimilar Solids at Low Temperatures , 1959 .

[16]  Quantum heat transfer through an atomic wire , 1999, cond-mat/9908204.

[17]  D. Ferry,et al.  Transport in nanostructures , 1999 .

[18]  M. C. Cross,et al.  Effect of surface roughness on the universal thermal conductance , 2001 .

[19]  M. Lannoo,et al.  Atomic and electronic structure of surfaces , 1991 .

[20]  G. Kirczenow,et al.  Quantized Thermal Conductance of Dielectric Quantum Wires , 1998, cond-mat/9801238.

[21]  Gene H. Golub,et al.  Matrix computations , 1983 .

[22]  M. Cross,et al.  Surface scattering analysis of phonon transport in the quantum limit using an elastic model , 2002, cond-mat/0204450.

[23]  M. Roukes,et al.  Heat transport in mesoscopic systems , 1998, cond-mat/9801252.

[24]  Jun Xu,et al.  EQUILIBRIUM MOLECULAR DYNAMICS STUDY OF PHONON THERMAL TRANSPORT IN NANOMATERIALS , 2004 .

[25]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[26]  Wei‐Qing Huang,et al.  Discontinuity effect on the phonon transmission and thermal conductance in a dielectric quantum waveguide , 2005 .

[27]  G. V. Chester,et al.  Solid State Physics , 2000 .

[28]  R. S. Miller,et al.  PARALLEL COMPUTATION OF THE BOLTZMANN TRANSPORT EQUATION FOR MICROSCALE HEAT TRANSFER IN MULTILAYERED THIN FILMS , 2004 .

[29]  S. T. Buckland,et al.  An Introduction to the Bootstrap. , 1994 .

[30]  H. Maris,et al.  Kapitza conductance and heat flow between solids at temperatures from 50 to 300 K. , 1993, Physical review. B, Condensed matter.

[31]  Francisco Guinea,et al.  Effective two-dimensional Hamiltonian at surfaces , 1983 .

[32]  T. Fisher,et al.  Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method , 2007 .