Gravitational Lensing by Rotating Wormholes

In this paper the deflection angle of light by a rotating Teo wormhole spacetime is calculated in the weak limit approximation. We mainly focus on the weak deflection angle by revealing the gravitational lensing as a partially global topological effect. We apply the Gauss-Bonnet theorem (GBT) to the optical geometry osculating the Teo-Randers wormhole optical geometry to calculate the deflection angle. Furthermore we find the same result using the standard geodesic method. We have found that the deflection angle can be written as a sum of two terms, namely the first term is proportional to the throat of the wormhole and depends entirely on the geometry, while the second term is proportional to the spin angular momentum parameter of the wormhole. A direct observation using lensing can shed light and potentially test the nature of rotating wormholes by comparing with the black holes systems.

[1]  Prieslei Goulart Phantom wormholes in Einstein–Maxwell-dilaton theory , 2017, 1708.00935.

[2]  A. Banerjee,et al.  Light deflection by charged wormholes in Einstein-Maxwell-dilaton theory , 2017, 1707.01416.

[3]  K. Jusufi Deflection Angle of Light by Wormholes using the Gauss-Bonnet Theorem , 2017, 1706.01244.

[4]  S. Kar,et al.  Gravitational lensing by scalar-tensor wormholes and the energy conditions , 2017, 1705.11008.

[5]  .. Sakalli,et al.  Effect of Lorentz Symmetry Breaking on the Deflection of Light in a Cosmic String Spacetime , 2017, 1705.06197.

[6]  J. Schee,et al.  Gravitational lensing by regular black holes surrounded by plasma , 2017 .

[7]  A. Banerjee,et al.  Light deflection by a rotating global monopole spacetime , 2017, 1702.05600.

[8]  Suzuki Yusuke,et al.  Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit , 2017 .

[9]  A. Övgün,et al.  Hawking radiation and deflection of light from Rindler modified Schwarzschild black hole , 2017, 1702.04636.

[10]  N. Tsukamoto Retrolensing by a wormhole at deflection angles π and 3π , 2017, 1701.09169.

[11]  T. Harada,et al.  Light curves of light rays passing through a wormhole , 2016, 1607.01120.

[12]  Parthapratim Pradhan,et al.  Behavior of a test gyroscope moving towards a rotating traversable wormhole , 2016, 1603.09683.

[13]  S. Chakraborty,et al.  Strong gravitational lensing—a probe for extra dimensions and Kalb-Ramond field , 2016, 1611.06936.

[14]  N. Tsukamoto Strong deflection limit analysis and gravitational lensing of an Ellis wormhole , 2016, 1607.07022.

[15]  A. Abdujabbarov,et al.  Shadow of rotating wormhole in plasma environment , 2016 .

[16]  K. Jusufi Light deflection with torsion effects caused by a spinning cosmic string , 2016, 1605.02781.

[17]  Monika Richter,et al.  Gravitation And Cosmology , 2016 .

[18]  K. Jusufi Gravitational lensing by Reissner-Nordström black holes with topological defects , 2015, 1510.08526.

[19]  V. Bozza,et al.  Alternatives to Schwarzschild in the weak field limit of General Relativity , 2015, 1502.05178.

[20]  C. Bambi,et al.  High energy collision of two particles in wormhole spacetimes , 2014, 1411.5778.

[21]  J. Polchinski,et al.  Gauge-gravity duality and the black hole interior. , 2013, Physical review letters.

[22]  Chul-Moon Yoo,et al.  Wave Effect in Gravitational Lensing by the Ellis Wormhole , 2013, 1302.7170.

[23]  T. Harada,et al.  Signed magnification sums for general spherical lenses , 2012, 1211.0380.

[24]  T. Harada,et al.  Can we distinguish between black holes and wormholes by their Einstein ring systems , 2012, 1207.0047.

[25]  M. Werner Gravitational lensing in the Kerr-Randers optical geometry , 2012, 1205.3876.

[26]  H. Asada,et al.  Deflection angle of light in an Ellis wormhole geometry , 2012, 1204.3710.

[27]  F. Abe GRAVITATIONAL MICROLENSING BY THE ELLIS WORMHOLE , 2010, 1009.6084.

[28]  A. Potapov,et al.  BENDING OF LIGHT IN ELLIS WORMHOLE GEOMETRY , 2010 .

[29]  G. Gibbons,et al.  Applications of the Gauss–Bonnet theorem to gravitational lensing , 2008, 0807.0854.

[30]  S. Sen,et al.  Gravitational lensing by wormholes , 2008, 0806.4059.

[31]  Yuan-zhong Zhang,et al.  Gravitational lensing by wormholes , 2006, gr-qc/0602062.

[32]  S. Nojiri,et al.  Unified Approach to Study Quantum Properties of Primordial Black Holes, Wormholes and of Quantum Cosmology , 1999, gr-qc/9907008.

[33]  S. Nojiri,et al.  Can primordial wormholes be induced by GUTs at the early Universe , 1999, gr-qc/9904035.

[34]  Edward Teo Rotating traversable wormholes , 1998, gr-qc/9803098.

[35]  Matt Visser,et al.  Lorentzian Wormholes: From Einstein to Hawking , 1995 .

[36]  Thorne,et al.  Wormholes, time machines, and the weak energy condition. , 1988, Physical review letters.

[37]  K. Thorne,et al.  Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity , 1988 .

[38]  G. Clément,et al.  Geometrical optics in the Ellis geometry , 1984 .

[39]  H. G. Ellis Ether flow through a drainhole - a particle model in general relativity , 1973 .

[40]  Robert H. Boyer,et al.  Maximal Analytic Extension of the Kerr Metric , 1967 .

[41]  J. Wheeler,et al.  Causality and Multiply Connected Space-Time , 1962 .

[42]  Albert Einstein,et al.  The Particle Problem in the General Theory of Relativity , 1935 .