Fluid Inclusion Studies of Ore and Gangue Minerals from the Piaotang Tungsten Deposit, Southern Jiangxi Province, China

The Piaotang deposit is one of the largest vein‐type W‐polymetallic deposits in southern Jiangxi Province, South China. The coexistence of wolframite and cassiterite is an important feature of the deposit. Based on detailed petrographic observations, microthermometry of fluid inclusions in wolframite, cassiterite and intergrown quartz was undertaken. The inclusions in wolframite were observed by infrared microscope, while those in cassiterite and quartz were observed in visible light. The fluid inclusions in wolframite can be divided into two types: aqueous inclusions with a large vapor‐phase proportion and aqueous inclusions with a small vapor‐phase ratio. The homogenization temperature (Th) of inclusions in wolframite with large vapor‐phase ratios ranged from 280°C to 390°C, with salinity ranging from 3.1 to 7.2 wt% NaCl eq. In contrast, the Th values of inclusions with small vapor‐phase ratios ranged from 216°C to 264°C, with salinity values ranging from 3.5 to 9.3 wt% NaCl eq. Th values of primary inclusions in cassiterite ranged from 316°C to 380°C, with salinity ranging from 5.4 to 9.3 wt% NaCl eq. Th values for primary fluid inclusions in quartz ranged from 162°C to 309°C, with salinity values ranging from 1.2 to 6.7 wt% NaCl eq. The results show that the formation conditions of wolframite, cassiterite and intergrown quartz are not uniform. The evolutionary processes of fluids related to these three kinds of minerals are also significantly different. Intergrown quartz cannot provide the depositional conditions of wolframite and cassiterite. The fluids related to tungsten mineralization for the NaCl‐H2O system had a medium‐to‐high temperature and low salinity, while the fluids related to tin mineralization for the NaCl‐H2O system had a high temperature and medium‐to‐low salinity. The results of this study suggest that fluid cooling is the main mechanism for the precipitation of tungsten and tin.

[1]  D. Alderton Fluid Inclusions , 2021, Encyclopedia of Geology.

[2]  Junyi Pan,et al.  Ore‐forming Fluid and Metallogenic Mechanism of Wolframite–Quartz Vein‐type Tungsten Deposits in South China , 2020, Acta Geologica Sinica - English Edition.

[3]  Junyi Pan,et al.  An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China , 2015 .

[4]  H. Hui Contrasting infrared microthermometry study of fluid inclusions in coexisting quartz,wolframite and other minerals: A case study of Xihuashan quartz-vein tungsten deposit,China , 2015 .

[5]  S. Wen Infrared microthermometry of fluid inclusions in stibnite from the Dachang antimony deposit,Guizhou , 2015 .

[6]  W. Xu-dong Fluid Inclusion Studies on Coexisting Cassiterite and Quartz from the Piaotang Tungsten Deposit , Jiangxi Province , China , 2013 .

[7]  Jian‐tang Peng,et al.  Infrared microthermometric and stable isotopic study of fluid inclusions in wolframite at the Xihuashan tungsten deposit, Jiangxi province, China , 2012, Mineralium Deposita.

[8]  Zhenyu He,et al.  Geochronology, petrogenesis and metallogeny of Piaotang granitoids in the tungsten deposit region of South China , 2010 .

[9]  P. Ni,et al.  Origin of ore-forming fluid in the Piaotang tungsten deposit in Jiangxi Province: Evidence from helium and argon isotopes , 2010 .

[10]  T. Pettke,et al.  Direct Analysis of Ore-Precipitating Fluids: Combined IR Microscopy and LA-ICP-MS Study of Fluid Inclusions in Opaque Ore Minerals , 2010 .

[11]  J. Raith,et al.  Gold-oxysulphides in copper deposits of the Greywacke Zone, Austria: A mineral chemical and infrared fluid inclusion study , 2009 .

[12]  Zhang Wenlan New Dating of the Piaotang Granite and Related Tungsten Mineralizationin Southern Jiangxi , 2009 .

[13]  W. Xu-dong A Preliminary Study on the Features and Geologic Implication of the Accompanying Metals in Tungsten Deposits in the Nanling Region , 2008 .

[14]  Wang Xu Fluid inclusion study on the Piaotang tungsten deposit,southern Jiangxi province,China. , 2008 .

[15]  X. Jianxiang A New Type of Tungsten Deposit in Southern Jiangxi and the New Model of "Five Floors+Basement" for Prospecting , 2008 .

[16]  R. Moritz Fluid salinities obtained by infrared microthermometry of opaque minerals: Implications for ore deposit modeling — A note of caution , 2006 .

[17]  R. Romer,et al.  Genesis of itabirite-hosted Au–Pd–Pt-bearing hematite-(quartz) veins, Quadrilátero Ferrífero, Minas Gerais, Brazil: constraints from fluid inclusion infrared microthermometry, bulk crush-leach analysis and U–Pb systematics , 2005 .

[18]  T. Pettke,et al.  Fluid evolution in the W-Cu-Zn-Pb San Cristobal vein, Peru: fluid inclusion and stable isotope evidence , 2004 .

[19]  S. Hagemann,et al.  P-T-X conditions of hydrothermal fluids and precipitation mechanism of stibnite-gold mineralization at the Wiluna lode-gold deposits, Western Australia: conventional and infrared microthermometric constraints , 2003 .

[20]  Hua Ren-mi Comparison in the Characteristics, Origin, and Related Metallogeny between Granites in Dajishan and Piaotang, Southern Jiangxi, China , 2003 .

[21]  A. Campbell,et al.  Near-Infrared Observation and Microthermometry of Pyrite-Hosted Fluid Inclusions , 2002 .

[22]  L. Bailly,et al.  Morphology, origin and infrared microthermometry of fluid inclusions in pyrite from the Radka epithermal copper deposit, Srednogorie zone, Bulgaria , 2002 .

[23]  L. Bailly,et al.  INFRARED MICROTHERMOMETRY AND CHEMISTRY OF WOLFRAMITE FROM THE BAIA SPRIE EPITHERMAL DEPOSIT, ROMANIA , 2002 .

[24]  L. Bailly,et al.  FLUID INCLUSION STUDY OF STIBNITE USING INFRARED MICROSCOPY: AN EXAMPLE FROM THE BROUZILS ANTIMONY DEPOSIT (VENDEE, ARMORICAN MASSIF, FRANCE) , 2000 .

[25]  S. Wood,et al.  The Hydrothermal Geochemistry of Tungsten in Granitoid Environments: I. Relative Solubilities of Ferberite and Scheelite as a Function of T, P, pH, and mNaCl , 2000 .

[26]  J. Gutzmer,et al.  Fluid inclusion studies in cogenetic hematite, hausmannite, and gangue minerals from high-grade manganese ores in the Kalahari manganese field, South Africa , 1999 .

[27]  U. Kempe,et al.  Fluid regime and ore formation in the tungsten(–yttrium) deposits of Kyzyltau (Mongolian Altai): evidence for fluid variability in tungsten–tin ore systems , 1999 .

[28]  V. Lüders,et al.  Possibilities and limits of infrared light microthermometry applied to studies of pyrite-hosted fluid inclusions , 1999 .

[29]  V. Gallagher,et al.  Fluid inclusion study of the Ballinglen W-Sn-sulphide mineralization, SE Ireland , 1997 .

[30]  Volker Lueders,et al.  Contribution of infrared microscopy to fluid inclusion studies in some opaque minerals (wolframite, stibnite, bournonite); metallogenic implications , 1996 .

[31]  A. Campbell,et al.  Microthermometry of enargite-hosted fluid inclusions from the Lepanto, Philippines, high-sulfidation CuAu deposit , 1995 .

[32]  S. Yun,et al.  Origin and evolution of W-Mo-producing fluids in a granitic hydrothermal system : Geochemical studies of quartz vein deposits around the Susan granite, Hwanggangri district, Republic of Korea , 1994 .

[33]  R. Goldstein,et al.  Systematics of fluid inclusions in diagenetic minerals , 1994 .

[34]  J. Richards,et al.  Observations of zoning and fluid inclusions in pyrite using a transmitted infrared light microscope (Lambda < or = 1.9 mu m) , 1993 .

[35]  G. Protano,et al.  The W-Mo deposit of Perda Majori (SE Sardinia, Italy): a fluid inclusion study of ore and gangue minerals , 1992 .

[36]  A. Williams-Jones,et al.  C-O-H-N fluid evolution at Saint-Robert, Quebec; implications for W-Bi-Ag mineral deposition , 1991 .

[37]  D. Kontak,et al.  The San Judas Tadeo W (-Mo, Au) deposit; Permian lithophile mineralization in southeastern Peru , 1990 .

[38]  L. Diamond Fluid inclusion evidence for P-V-T-X evolution of hydrothermal solutions in late-Alpine gold-quartz veins at Brusson, Val d'Ayas, Northwest Italian Alps , 1990 .

[39]  C. Heinrich The chemistry of hydrothermal tin(-tungsten) ore deposition , 1990 .

[40]  K. Panter,et al.  Comparison of fluid inclusions in coexisting (cogenetic?) wolframite, cassiterite, and quartz from St. Michael's Mount and Cligga Head, Cornwall, England☆ , 1990 .

[41]  I. Samson Fluid evolution and mineralization in a subvolcanic granite stock; the Mount Pleasant W-Mo-Sn deposits, New Brunswick, Canada , 1990 .

[42]  J. Lynch Hydrothermal alteration, veining, and fluid-inclusion characteristics of the Kalzas wolframite deposit, Yukon , 1989 .

[43]  D. Polya Chemistry of the main-stage ore-forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal; implications for models of ore genesis , 1989 .

[44]  D. Manning,et al.  Evolution of the Cornubian ore field, Southwest England; Part II, Mineral deposits and ore-forming processes , 1989 .

[45]  R. Bodnar,et al.  Freezing point depression of NaCl-KCl-H 2 O solutions , 1988 .

[46]  A. Campbell,et al.  Observation of fluid inclusions in wolframite from Panasqueira, Portugal , 1988 .

[47]  A. Campbell,et al.  Infrared fluid inclusion microthermometry on coexisting wolframite and quartz , 1987 .

[48]  R. Seal,et al.  Stockwork tungsten (scheelite)-molybdenum mineralization, Lake George, southwestern New Brunswick , 1987 .

[49]  J. Dubessy,et al.  The P-V̄-T-X-f O2 evolution of H2O-CO2-CH4-bearing fluid in a wolframite vein: Reconstruction from fluid inclusion studies , 1985 .

[50]  Andrew R. Campbell,et al.  Internal features of ore minerals seen with the infrared microscope , 1984 .

[51]  R. Kerrich,et al.  Progressive 18O depletion during CO2 separation from a carbon dioxide-rich hydrothermal fluid: evidence from the Grey River tungsten deposit, Newfoundland , 1982 .

[52]  C. Ramboz,et al.  Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data: II. Interpretation of fluid inclusion data in terms of immiscibility , 1982 .

[53]  C. Ramboz,et al.  Fluid immiscibility in natural processes: Use and misuse of fluid inclusion data , 1982 .

[54]  R. Rye,et al.  Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal , 1979 .

[55]  K. Kinnunen,et al.  Fluid inclusions in cassiterite and beryl in greisen veins in the Eurajoki Stock, southwestern Finland , 1979 .

[56]  G. Landis,et al.  Geologic, Fluid Inclusion, and Stable Isotope Studies of the Pasto Buena Tungsten-Base Metal Ore Deposit, Northern Peru , 1974 .

[57]  W. M. Little Inclusions in cassiterite and associated minerals , 1960 .