Metamagnetic transitions and magnetoelectric responses in the chiral polar helimagnet Ni2InSbO6

In this study, the magnetic field effect was investigated on the magnetic and electric properties of a chiral-polar-ordered corundum, ${\mathrm{Ni}}_{2}\mathrm{InSb}{\mathrm{O}}_{6}$. Single-crystal soft x-ray and neutron diffraction measurements were used to verify the magnetic modulations with long wavelengths. The modulation direction tends to align along the magnetic field when it is applied perpendicular to the polar axis, suggesting that the nearly proper-screw-type helicoid should be formed below 77 K owing to the dominant activation of chirality-induced uniform Dzyaloshinskii-Moriya interactions despite the existence of both chirality and polarity. When a high magnetic field is applied perpendicular to the polar axis, a helix-to-canted antiferromagnetic transition is observed through the intermediate soliton lattice type state. In contrast, a magnetic field applied along the polar axis induces a first-order metamagnetic transition. These metamagnetic transitions accompany a change in the electric polarization along the polar axis.

[1]  K. Lefmann,et al.  Field-induced magnetic incommensurability in multiferroic Ni3TeO6 , 2019, Physical Review B.

[2]  J. Neilson,et al.  Partial antiferromagnetic helical order in single-crystal Fe3PO4O3 , 2019, 1910.08818.

[3]  A. Fert,et al.  Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets , 2019, Nature Materials.

[4]  Y. Kubota,et al.  Magnetic Phase Diagram and Chiral Soliton Phase of Chiral Antiferromagnet [NH4][Mn(HCOO)3] , 2019, Journal of the Physical Society of Japan.

[5]  A. N. Smirnov,et al.  Lattice and magnetic dynamics in the polar, chiral, and incommensurate antiferromagnet Ni2InSbO6 , 2019, Physical Review B.

[6]  M. Titov,et al.  Stability and lifetime of antiferromagnetic skyrmions , 2017, Physical Review B.

[7]  J. Attfield,et al.  Lock-in spin structures and ferrimagnetism in polar Ni2-xCoxScSbO6 oxides. , 2018, Chemical Communications.

[8]  J. White,et al.  Direct evidence for cycloidal modulations in the thermal-fluctuation-stabilized spin spiral and skyrmion states of GaV 4 S 8 , 2018 .

[9]  Y. Tokura,et al.  Néel-Type Skyrmion Lattice in the Tetragonal Polar Magnet VOSe_{2}O_{5}. , 2017, Physical review letters.

[10]  M. Greenblatt,et al.  Polar Magnets in Double Corundum Oxides , 2017 .

[11]  T. Arima,et al.  Thermodynamically stable skyrmion lattice at low temperatures in a bulk crystal of lacunar spinel GaV 4 Se 8 , 2017 .

[12]  C. Felser,et al.  Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.

[13]  Y. Tokura,et al.  Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of FeCoSi , 2017, 1701.05448.

[14]  Inoue Katsuya,et al.  Symmetry, Structure, and Dynamics of Monoaxial Chiral Magnets , 2016 .

[15]  S. Cheong,et al.  Magnetoelectric Coupling through the Spin Flop Transition in Ni_{3}TeO_{6}. , 2016, Physical review letters.

[16]  Yan Zhou,et al.  Magnetic bilayer-skyrmions without skyrmion Hall effect , 2015, Nature Communications.

[17]  Yan Zhou,et al.  Antiferromagnetic Skyrmion: Stability, Creation and Manipulation , 2015, Scientific Reports.

[18]  Y. Tokura,et al.  Dynamical process of skyrmion-helical magnetic transformation of the chiral-lattice magnet FeGe probed by small-angle resonant soft x-ray scattering , 2015 .

[19]  J. White,et al.  Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. , 2015, Nature materials.

[20]  T. Oku,et al.  The Design and q Resolution of the Small and Wide Angle Neutron Scattering Instrument (TAIKAN) in J-PARC , 2015 .

[21]  J. Neilson,et al.  Nanosized helical magnetic domains in strongly frustrated Fe$_3$PO$_4$O$_3$ , 2015, 1509.07846.

[22]  S. Cheong,et al.  Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni_{3}TeO_{6}. , 2015, Physical review letters.

[23]  S. Cheong,et al.  Interlocked chiral/polar domain walls and large optical rotation in Ni3TeO6 , 2015 .

[24]  P. Lunkenheimer,et al.  Multiferroicity and skyrmions carrying electric polarization in GaV4S8 , 2015, Science Advances.

[25]  J. White,et al.  A new class of chiral materials hosting magnetic skyrmions beyond room temperature , 2015, Nature Communications.

[26]  N. Furukawa,et al.  Magnetic control of transverse electric polarization in BiFeO3 , 2015, Nature Communications.

[27]  Naoto Nagaosa,et al.  Multiferroics of spin origin , 2014, Reports on progress in physics. Physical Society.

[28]  P. Nordblad,et al.  Crystal growth experiments in the systems Ni2MSbO6 (M = Sc, In) using chemical vapour transport reactions: Ni2InSbO6 and NiSb2O6 crystals in the millimetre range , 2014 .

[29]  S. Cheong,et al.  Non-hysteretic colossal magnetoelectricity in a collinear antiferromagnet , 2014, Nature Communications.

[30]  P. Nordblad,et al.  Spin and Dipole Ordering in Ni2InSbO6 and Ni2ScSbO6 with Corundum-Related Structure. , 2013, 1304.0474.

[31]  H. Nakao,et al.  Diffractometer for small angle resonant soft x-ray scattering under magnetic field , 2013 .

[32]  M. Marder,et al.  Field-induced phase transitions in the helimagnet Ba2CuGe2O7 , 2012, 1211.5782.

[33]  Y. Tokura,et al.  Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3 , 2012, 1206.4404.

[34]  H. Berger,et al.  Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3. , 2012, Physical review letters.

[35]  Y. Tokura,et al.  Observation of Skyrmions in a Multiferroic Material , 2012, Science.

[36]  S. Gvasaliya,et al.  Phase diagram of the Dzyaloshinskii-Moriya helimagnet Ba 2 CuGe 2 O 7 in canted magnetic fields , 2012, 1203.3650.

[37]  C. Pappas New Twist in Chiral Magnets , 2012 .

[38]  A. S. Ovchinnikov,et al.  Chiral magnetic soliton lattice on a chiral helimagnet. , 2012, Physical review letters.

[39]  S. Gvasaliya,et al.  Double- k phase of the Dzyaloshinskii-Moriya helimagnet Ba 2 CuGe 2 O 7 , 2011, 1108.0432.

[40]  V. Petricek,et al.  Single magnetic chirality in the magnetoelectric NdFe₃(¹¹BO₃)₄ , 2010, 1001.1784.

[41]  H. Berger,et al.  Ni3TeO6—a collinear antiferromagnet with ferromagnetic honeycomb planes , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[42]  P. Böni,et al.  Skyrmion Lattice in a Chiral Magnet , 2009, Science.

[43]  T. Arima Ferroelectricity Induced by Proper-Screw Type Magnetic Order(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2007 .

[44]  N. Nagaosa,et al.  Spin current and magnetoelectric effect in noncollinear magnets. , 2004, Physical review letters.

[45]  N. Spaldin,et al.  Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite , 2004, cond-mat/0407003.

[46]  Y. Tokura,et al.  Magnetic control of ferroelectric polarization , 2003, Nature.

[47]  J. Chovan,et al.  Intermediate phase in the spiral antiferromagnet Ba 2 CuGe 2 O 7 , 2001, cond-mat/0103217.

[48]  G. Shirane,et al.  Field-induced incommensurate-to-commensurate transition in Ba 2 CuGe 2 O 7 , 1997, cond-mat/9706146.

[49]  Shirane,et al.  Spiral phase and spin waves in the quasi-two-dimensional antiferromagnet Ba2CuGe2O7. , 1996, Physical review. B, Condensed matter.

[50]  Y. Iźyumov,et al.  REVIEWS OF TOPICAL PROBLEMS: Modulated, or long-periodic, magnetic structures of crystals , 1984 .

[51]  K. Ziebeck,et al.  Incommensurate spin structure in the low-temperature magnetic phase of NiBr2 , 1980 .

[52]  D. Billerey,et al.  Neutron diffraction study of the commensurate and incommensurate magnetic structures of NiBr2 , 1980 .

[53]  J. Rossat-Mignod,et al.  Magnetic structure of the perovskite-like compound tbmno3 , 1977 .

[54]  D. Robbins,et al.  Optical and neutron diffraction study of the magnetic phase diagram of NiBr2 , 1976 .

[55]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[56]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .