Metamagnetic transitions and magnetoelectric responses in the chiral polar helimagnet Ni2InSbO6
暂无分享,去创建一个
T. Arima | H. Nakao | D. Morikawa | H. Sagayama | T. Arima | M. Tokunaga | N. Abe | C. Tabata | V. Ukleev | Y. Fujima | Y. Tokunaga | T. Sato | Y. Murakami | S. Kimura | Y. Araki | Y. Fujima | N. Abe | M. Tokunaga | D. Morikawa | V. Ukleev | Y. Yamasaki | C. Tabata | H. Nakao | H. Sagayama | K. Ohishi | Y. Murakami | Tatsuki Sato | Yusuke Tokunaga | K. Ohishi | M. Tokunaga | Yusuke Araki | Shojiro Kimura | Daisuke Morikawa | Yuichi Yamasaki | Youichi Murakami | Kazuki Ohishi
[1] K. Lefmann,et al. Field-induced magnetic incommensurability in multiferroic Ni3TeO6 , 2019, Physical Review B.
[2] J. Neilson,et al. Partial antiferromagnetic helical order in single-crystal Fe3PO4O3 , 2019, 1910.08818.
[3] A. Fert,et al. Room-temperature stabilization of antiferromagnetic skyrmions in synthetic antiferromagnets , 2019, Nature Materials.
[4] Y. Kubota,et al. Magnetic Phase Diagram and Chiral Soliton Phase of Chiral Antiferromagnet [NH4][Mn(HCOO)3] , 2019, Journal of the Physical Society of Japan.
[5] A. N. Smirnov,et al. Lattice and magnetic dynamics in the polar, chiral, and incommensurate antiferromagnet Ni2InSbO6 , 2019, Physical Review B.
[6] M. Titov,et al. Stability and lifetime of antiferromagnetic skyrmions , 2017, Physical Review B.
[7] J. Attfield,et al. Lock-in spin structures and ferrimagnetism in polar Ni2-xCoxScSbO6 oxides. , 2018, Chemical Communications.
[8] J. White,et al. Direct evidence for cycloidal modulations in the thermal-fluctuation-stabilized spin spiral and skyrmion states of GaV 4 S 8 , 2018 .
[9] Y. Tokura,et al. Néel-Type Skyrmion Lattice in the Tetragonal Polar Magnet VOSe_{2}O_{5}. , 2017, Physical review letters.
[10] M. Greenblatt,et al. Polar Magnets in Double Corundum Oxides , 2017 .
[11] T. Arima,et al. Thermodynamically stable skyrmion lattice at low temperatures in a bulk crystal of lacunar spinel GaV 4 Se 8 , 2017 .
[12] C. Felser,et al. Magnetic antiskyrmions above room temperature in tetragonal Heusler materials , 2017, Nature.
[13] Y. Tokura,et al. Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of FeCoSi , 2017, 1701.05448.
[14] Inoue Katsuya,et al. Symmetry, Structure, and Dynamics of Monoaxial Chiral Magnets , 2016 .
[15] S. Cheong,et al. Magnetoelectric Coupling through the Spin Flop Transition in Ni_{3}TeO_{6}. , 2016, Physical review letters.
[16] Yan Zhou,et al. Magnetic bilayer-skyrmions without skyrmion Hall effect , 2015, Nature Communications.
[17] Yan Zhou,et al. Antiferromagnetic Skyrmion: Stability, Creation and Manipulation , 2015, Scientific Reports.
[18] Y. Tokura,et al. Dynamical process of skyrmion-helical magnetic transformation of the chiral-lattice magnet FeGe probed by small-angle resonant soft x-ray scattering , 2015 .
[19] J. White,et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. , 2015, Nature materials.
[20] T. Oku,et al. The Design and q Resolution of the Small and Wide Angle Neutron Scattering Instrument (TAIKAN) in J-PARC , 2015 .
[21] J. Neilson,et al. Nanosized helical magnetic domains in strongly frustrated Fe$_3$PO$_4$O$_3$ , 2015, 1509.07846.
[22] S. Cheong,et al. Successive Magnetic-Field-Induced Transitions and Colossal Magnetoelectric Effect in Ni_{3}TeO_{6}. , 2015, Physical review letters.
[23] S. Cheong,et al. Interlocked chiral/polar domain walls and large optical rotation in Ni3TeO6 , 2015 .
[24] P. Lunkenheimer,et al. Multiferroicity and skyrmions carrying electric polarization in GaV4S8 , 2015, Science Advances.
[25] J. White,et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature , 2015, Nature Communications.
[26] N. Furukawa,et al. Magnetic control of transverse electric polarization in BiFeO3 , 2015, Nature Communications.
[27] Naoto Nagaosa,et al. Multiferroics of spin origin , 2014, Reports on progress in physics. Physical Society.
[28] P. Nordblad,et al. Crystal growth experiments in the systems Ni2MSbO6 (M = Sc, In) using chemical vapour transport reactions: Ni2InSbO6 and NiSb2O6 crystals in the millimetre range , 2014 .
[29] S. Cheong,et al. Non-hysteretic colossal magnetoelectricity in a collinear antiferromagnet , 2014, Nature Communications.
[30] P. Nordblad,et al. Spin and Dipole Ordering in Ni2InSbO6 and Ni2ScSbO6 with Corundum-Related Structure. , 2013, 1304.0474.
[31] H. Nakao,et al. Diffractometer for small angle resonant soft x-ray scattering under magnetic field , 2013 .
[32] M. Marder,et al. Field-induced phase transitions in the helimagnet Ba2CuGe2O7 , 2012, 1211.5782.
[33] Y. Tokura,et al. Magnetoelectric nature of skyrmions in a chiral magnetic insulator Cu2OSeO3 , 2012, 1206.4404.
[34] H. Berger,et al. Long-wavelength helimagnetic order and skyrmion lattice phase in Cu2OSeO3. , 2012, Physical review letters.
[35] Y. Tokura,et al. Observation of Skyrmions in a Multiferroic Material , 2012, Science.
[36] S. Gvasaliya,et al. Phase diagram of the Dzyaloshinskii-Moriya helimagnet Ba 2 CuGe 2 O 7 in canted magnetic fields , 2012, 1203.3650.
[37] C. Pappas. New Twist in Chiral Magnets , 2012 .
[38] A. S. Ovchinnikov,et al. Chiral magnetic soliton lattice on a chiral helimagnet. , 2012, Physical review letters.
[39] S. Gvasaliya,et al. Double- k phase of the Dzyaloshinskii-Moriya helimagnet Ba 2 CuGe 2 O 7 , 2011, 1108.0432.
[40] V. Petricek,et al. Single magnetic chirality in the magnetoelectric NdFe₃(¹¹BO₃)₄ , 2010, 1001.1784.
[41] H. Berger,et al. Ni3TeO6—a collinear antiferromagnet with ferromagnetic honeycomb planes , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.
[42] P. Böni,et al. Skyrmion Lattice in a Chiral Magnet , 2009, Science.
[43] T. Arima. Ferroelectricity Induced by Proper-Screw Type Magnetic Order(Condensed matter: electronic structure and electrical, magnetic, and optical properties) , 2007 .
[44] N. Nagaosa,et al. Spin current and magnetoelectric effect in noncollinear magnets. , 2004, Physical review letters.
[45] N. Spaldin,et al. Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite , 2004, cond-mat/0407003.
[46] Y. Tokura,et al. Magnetic control of ferroelectric polarization , 2003, Nature.
[47] J. Chovan,et al. Intermediate phase in the spiral antiferromagnet Ba 2 CuGe 2 O 7 , 2001, cond-mat/0103217.
[48] G. Shirane,et al. Field-induced incommensurate-to-commensurate transition in Ba 2 CuGe 2 O 7 , 1997, cond-mat/9706146.
[49] Shirane,et al. Spiral phase and spin waves in the quasi-two-dimensional antiferromagnet Ba2CuGe2O7. , 1996, Physical review. B, Condensed matter.
[50] Y. Iźyumov,et al. REVIEWS OF TOPICAL PROBLEMS: Modulated, or long-periodic, magnetic structures of crystals , 1984 .
[51] K. Ziebeck,et al. Incommensurate spin structure in the low-temperature magnetic phase of NiBr2 , 1980 .
[52] D. Billerey,et al. Neutron diffraction study of the commensurate and incommensurate magnetic structures of NiBr2 , 1980 .
[53] J. Rossat-Mignod,et al. Magnetic structure of the perovskite-like compound tbmno3 , 1977 .
[54] D. Robbins,et al. Optical and neutron diffraction study of the magnetic phase diagram of NiBr2 , 1976 .
[55] T. Moriya. Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .
[56] I. Dzyaloshinsky. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .